10.5

20
10.5

20 23.1 0.2 5 5

6.017 19.06.1 2 5.7 1.7 5 5.1 9 0.1 14

16.8 21.5

18.5 16.5 18.2 7.5 6.5 6.0 2.5 0.9

27.5

0.36

17.8 0.7

2.5

0.3 0.5 0.3 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6

23.5

3.0 33.0

31.7

6.5 0.3

6.0 2.5 0.9

16.5 18.2 7.5 6.5
194526 20 23.3 +0.9 5.4 0.5 = 185 -76.86

28414

12760 19.660 1889.4 +4 5-3 33.14 1885.5

012

672

19.734

6

740

19.729

\[\frac{1}{728} \]

734

+062

\[\frac{1.84}{35.08} \]

33.03 1933.1

16

33.19 568

32.18 1939.8

+31

32.49 72.9

32.84 36.4

32.84 50.9

-2.24

522.42

440

234.0

72
194737 54 27.5 54 51 7.5 472
12762

\[
\begin{align*}
\frac{5}{8} \text{107} & \quad + 0 \text{49} \quad \chi \\
+0120 & \quad + 0 \text{65} \quad 6\text{m25}
\end{align*}
\]
(54433) 20 23.7 -37 34 Ag K+ f(tide)

ω(tide) w(12.5) t20:260.4

6.23 +0.55 H2O-E case C.(x)

6.5:21.2 0.25
10EF

Y 48010

-50 -29 +23 0.225
-42 -21 +3 0.031

-240.55 -145466
-235.56 -124666 CP

-240 -115

24C(x)

43 Y(7) 0.034
144208 + 20 736 + 42 27 = 272 272

645 45 = 11

10044 + 1032 Carrying

049 1033

66 33

272

6245 5479

5585 8609
<table>
<thead>
<tr>
<th>R.A.</th>
<th>20.400</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC.</td>
<td>42.450</td>
</tr>
<tr>
<td>AM. R.A.</td>
<td>66.000</td>
</tr>
<tr>
<td>AM. DEC.</td>
<td>33.000</td>
</tr>
<tr>
<td>DISTANCE</td>
<td>5.000</td>
</tr>
<tr>
<td>MODULUS</td>
<td>100</td>
</tr>
<tr>
<td>AD. VEL.</td>
<td>-27.200</td>
</tr>
</tbody>
</table>

\(q_1 \) (U)	0.567
\(q_2 \) (U)	0.807
\(q_3 \) (U)	-0.166
\(\Delta U \)	257.123
\(U \)	30.216

\(q_1 \) (V)	0.134
\(q_2 \) (V)	0.108
\(q_3 \) (V)	0.985
\(\Delta V \)	47.812
\(V \)	-22.013

\(q_1 \) (W)	-0.813
\(q_2 \) (W)	0.581
\(q_3 \) (W)	0.047
\(\Delta W \)	-96.719
\(W \)	-10.944
2815 20 23.2 +53 29 89

6.49 0.19 0.92 1.13 3 2.89

[Arithmetic calculations and results]

84.5

[Additional calculations and results]
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.085</td>
<td>0.987</td>
<td>1.268</td>
</tr>
<tr>
<td>-18.371</td>
<td>-0.813</td>
<td>0.561</td>
</tr>
<tr>
<td>0.158</td>
<td>5.415</td>
<td>4.231</td>
</tr>
</tbody>
</table>

15

-

6
T Mix

20 24.5 -28 26 27-3.5

E: +0.5

62.320

+003 +015 6 LB

+21.1 Jones

7.1 315

+160 +1.80

+60

3.55

1.765

3.19

3.27 50

12.21

372 1.51

334

1.00

4.3 11.5
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.815</td>
<td>-12.719</td>
<td>0.071</td>
<td>0.221</td>
</tr>
<tr>
<td>22.259</td>
<td>0.005</td>
<td>-0.536</td>
<td>-9.733</td>
</tr>
</tbody>
</table>
20 25.7 38 17 5.4 Alm +0.48

195058
24867
12787

A3 II

-0023 22
-0732.6 N30
-0024 ± 0.1 -067 ± 0.6 Cr N30
-0024 ± 0.1 -0756 US 50
-0770
-0287

0.45 356

G7302215 0345 9994
194538 20 25.9 -68 11 K5III +37.8 ±0.9

8.84 +1.16 2.26

-0.7 -0.74 CP
-0.7 -0.80
+0.3 -0.76

7.459 0.3 0.397
10.0 10.0
194959 20 26.1 -17 36 6.8 dF8 -14.48

12793
25498

8.290 1902.8 -17 36 5.74 1901.5

42.894
25.415
8.3 12
35
1.277
-3
274

8.297 273
-25
1.272 + 0.25

1.011
61
5.11
5.798
23
5.87
5.70 -1.12

76.13

36.6
195006 20 26.2 -22 34 6.2 Gm1 + 55.56
28496
12295

+ 6007 ²²⁰³⁴ ²²³ N³⁰
+ 0.11723 - 0.26 ± 2.46 - N³⁰
\[195.342 \times 20 = 3906.84 \]

\[2.08 - 0.01 - 0.06 = 1.96 \]

\[8.5 + 1.65 + 1.16 \]

\[6.4 + 1.30 \]

\[6.65 - 1.27 \]

\[4.98 \times 4.5 = 9.5 \]
20 27.7 - 1.55 10 3 1.0

6.5 x 6

1991 1S 5.8

8.2 5.8 6.4

2.1 16.5

10 - 20
t+20

427.4 3.7

3.75 5.8 2.1

2.1 16.5

5.8 5.8 6.4