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Abstract

The AAVSO sunspot number has a subtle mathematical flaw in its
procedure which automatically inflates the reported numbers every time
the K-coefficients are recalculated. This will result in a slow and spurious
rise in apparent solar activity. This inflation is roughly 0.3% per
recalculation, and the K-coefficients have been changed ~18 times since
the founding of the AAVSO Sunspot Program in 1944. Thus, the current
inflation is ~6%, and it will become exponentially worse with time. While
the effect is now small enough not to be prominent, it causes the apparent
level of solar activity to increase with time. This increase contributes to the
confusion surrounding the issue of the detection of global warming due to
greenhouse gases. Thus, the old AAVSO numbers must be retroactively
corrected and procedures implemented that are free of inflation.

1. Introduction

Solar activity affects many aspects of life on Earth, ranging from activity/climate
connections (e.g., the Maunder Minimum and the Little Ice Age) to failures of power
grids. With the Space Age, the need for predicting and understanding our solar
environment has become vital for many important purposes. For example, the
observed global warming might be due to increased solar activity, man-made
greenhouse gases, or some combination of the two. The disentangling of these two
effects (and the consequent profound changes in public policy and long-term public
health) requires a detailed and accurate knowledge of the long-term behavior of our
Sun.

In recent times, precise and objective solar activity indicators based on radio and
x-ray luminosities have been developed. While these are direct measures of the solar
flux, they suffer from the shortness of the record. In contrast, sunspot numbers suffer
from being an indirect measure of the solar flux, but have the great advantage of
providing a record for almost four centuries (and for two millennia with naked eye
reports). Thus, for studies of the long-term activity of the Sun (such as evaluating the
greenhouse effect), the sunspot number is the only available and reliable index.

With so much at stake, we must examine the reliability of the sunspot numbers.
The primary trouble is that all numbers explicitly rely on the observer’s judgment as
to what to call a spot (as opposed to a pore). In general, observers are widely scattered
in their judgment, with typical variations of a factor of three. To avoid a bias based on
the training or equipment of the individuals, all systems scale the counts to some
standard and then average the scaled counts. But then there is the problem of how to
maintain that standard over the decades. If the standard varies, then spurious increases
or decreases in solar activity could lead to the implementation of incorrect public
policy.

I have been analyzing the various sunspot numbers for the stability of standards.
With regard to the AAV SO sunspot number, I have found a subtle mathematical flaw
in the data reduction procedure which artificially inflates the published number with
time. The consequences can be demonstrated from the published AAVSO procedure
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by means of a fairly simple mathematical derivation.

2. Inflation

The AAVSO procedure is reported in Taylor (1991). This procedure is identical
to that described in Shapley (1949) and Taylor (1985). Essentially, the published
number is a weighted and scaled linear average of all daily individual counts, where
the scaling factor (the K-coefficient) for each observer is a logarithmic average of the
previous year’s final scale factor. I will denote the AAVSO sunspot number as R, for
the 1th day of the current K evaluation period and r. for the jth day of the prev1ous K
evaluation period. I will denote the observed count (i.e., the reported count of
individual spots plus ten times the reported count of groups) to be C, for the Ith day
of the current period and the ith observer, and ¢, for the jth day of the prev1ous period
and the ith observer. Similarly, let K. be the utilized K-coefficient for the ith observer
in the current K evaluation period, and k, for the previous period. I will now examine
the case where all observers are welghted equally (although I will later drop this
assumption) for clarity of derivation. The equations presented in this section constitute
a short derivation of inflation. Now, the AAVSO procedure has the daily published
AAVSO number for the current period to be

= (KC,s (1)

where the brackets <..>. indicate a linear average of the available data over the given
index. The K-coefficient used is derived with a logarithmic average:

Ki = 1 (<loe(ti/ci)>j (2)

Note that the K-coefficients for the current period are evaluated by data from the
previous period.

Now let us consider the identical observations as made by some perfect observer.
This could be looked at as the result of some uniform and automated and sophisticated
program operating off space telescope images Such a perfect observer would report
some true value for the sunspot number in the current period (P,) and the previous
period (p.). Similarly, there will be some true K-coefficient for both periods for all
AAVSO observers, which will be scattered around some average value for each
observer (k). Let us quantify this scatter by a multiplicative error function for each
period (y, and Y, BE

Cij = pj /(Kiyi) (3)
Cil = Pl/(K iYi)' (4)

These two equations are just statements that the count reported by each observer is just
the real count divided by thereal K-coefficient. Bothy. and Y, are drawn from the same
distribution with the properties that the values are always | positive, their average is
unity, and there is some width to the distribution. This can be quantified by the
following constraints on the distribution functions D(y,) and D(Y,):

D(y,) = D(Y,), 5)
yi > 09 <yi>i = 1: <(yi-l)2>i >0 (6)
Y, >0,(Y).=1,{(Y-1)?), >0. )
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Let us also assume that for the first period the reported AAVSO number is exactly
perfect, so that r, = p.. Alternatively, this assumption can also be stated as taking the
previous epoch to dehne the scale for the subsequent numbers. Then, we can evaluate
the K-coefficient to be used in the current period as

K. = 10<losici)> = 1 ()<loglxiyi)>j = 1Qlog(kiyi) = KYy, (8)

with the use of equations (2) and (3).

The variation in the K-coefficients can be evaluated by various means. I have
analyzed the reported yearly values for more than 70 observers, many of whom
contributeto the AAVSO number. A typical year-to-year variation in the K-coefficient
is 10%.

Even though the published number for the previous epoch is perfect (by assumption),
the current epoch will have slight deviations due to inexact measurements of the K-
coefficients. Let us be quantitative in relating the published AAVSO number (R,) and
the true number (P,) for the current period. From equations (1), (4), and (8):

R, = (xyP/(x;Y)),=P(y/Y). ©)

Now for any distribution that satisfies equations (6) and (7), I can prove (see
Appendix) that

(y./Y). >1. (10)

Combining equations (9) and (10), we get

R>P. (11)

What is the implication of equation (11)? It means that the current epoch will have an
error such that the reported value is always larger than the correct value.

In general, there will be some factor (f) by which the current value will be too
large:

R =Pf. (12)

We will see later that f~ 1.003. This formula will apply to every pair of time periods
with a re-evaluation of the K-coefficients. So if the zeroth period has a correct number
(perhaps by definition), then the Nth period will have a published value that is larger as

R (N* period) = P f™. (13)

Equation (13) shows that the published AAVSO number has an incremental error that
increases with time such that it exponentially grows larger than the true number. This
is inflation.

So how much in error is the current AAVSO number? Shapley (1949) started the
current system with the Zurich numbers as a base in 194445 to calculate the first set
of K values in 1946. Subsequent recalculations of K are made annually for any year
where at least half the months have a final R >100 (Shapley 1949; Shapley 1995;
Taylor 1985; Taylor 1991; Mattei 1996). However, during the years when C.
Hossfield was Chairman of the AAVSO Solar Division (1964-1981), the K-coefficients
were recalculated only once (Hossfield 1996). With this information, I can look over
the monthly AAVSO numbers and determine the number of years with at least half the
months with R>100. Thus, N = 18, as close as can be estimated. Then the inflation to
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date is fN, or 6% for £ ~1.003. From 1945 to present, this total inflation is within the
typical monthly scatter, and so is not yet prominent. In subsequent decades, the
AAVSO number will have increasing errors, since these rise exponentially with time.
What is the root cause of this inflation? There are two needed conditions: First,
the AAVSO procedure uses observations from previous periods to establish K for the
current period. Second, the AAVSO uses a linear relation for equation (1). With both
of these conditions, the small random changes in K will cause the measured K-
coefficients as well as the published number to creep up with a steady inflation.

3. Realistic inflation

The above derivation of inflation has ignored the possibility of daily observational
errors by each observer. Let us quantify these daily errors by multiplicative factors X,

and x,, which satisfy conditions similar to equations (5)—7). Now equations (3) and
(4) can be expressed as

C,= (X P)/(xY). (15)
Similarly to equation (8), with I, =p, we get
Ki = 1 (Q<log(pi/cii)>j = Kiyi(njxij-m), (16)

where there are J days of observations in the previous period. The I1, symbol means
a product over all values of j. Now from equations (1), (15), and (16):

Rl = <Kiyi(Hinj-1/J)(XilP1)/ (KiYi»i - P1<yi/ Yi>i <Xil/ (Hjxijm»i' (17)
From a later derivation (see Appendix), we have
(X, > 1, (18)

so we get equation (11) (and equations (12) and (13)) again. Thus, individual daily
random errors do not change the conclusion that the AAVSO number suffers inflation.

The above derivations have assumed that all observers are equally weighted,
whereas the procedure is to form a weight from the average logarithmic deviations
from the scaled counts. The math then becomes tediously long, so I will not present
the corresponding proof of inflation. Instead, I can report on a complete Monte Carlo
simulation of the AAVSO procedure, with individual observer weights, daily
observational errors, and random daily clouds. My models show inflation in all cases.
In fact, the inflation factors are always identical to the case with equal weighting and
no clouds. For typical K variations of 10%, observer uncertainties of 10%, and 40%
cloudiness, for 50 observers, I find an average inflation of f~ 1.003.

4. How to repair the AAVSO number

Inflation can be conquered in any of several ways. First, the AAVSO might
abandon the current K(10G+F) formulation which leads to so many troubles and only
adds noise. In particular, empirical (Hoyt et al. 1994) and theoretical (Schaefer 1993)
arguments show that the correct formulation is simply to do a group number. However,
this elegant solution would have problems with continuity.
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Second, the old published A AVSO numbers must be repaired. This could be done
with appropriate studies on the average variation of K-coefficients and on average
observational errors. Then, detailed studies can evaluate the inflation factor. If the
dates of every K calculation can be determined, then the published AAVSO numbers
can be statistically deflated without examining the individual raw data.

Third, the incoming new data can be analyzed with some method that does not
suffer inflation. The most obvious such method is to modify equation (1) to be a
logarithmic average instead of a linear average. Thus:

logR,) = (log(K) + log(C,)),. (19)
Intermediate results then reproduce equation (8) and

R, =P, 100>, (20)
With

(log(y/Y)), =0, (21)

(see Appendix), we see that there is no inflation for this analysis procedure (that is,
f=1). If the old raw data are available, it might be possible to repair post facto the
inflation in the published numbers.

5. Summary

The AAVSO number suffers from a subtle mathematical mistake which
automatically increases the published number by a factor of ~1.003 every time the K-
coefficients are recalculated. The root of this problem is that the observations are
averaged linearly and that K-coefficients are calculated with old data. Note that the
existence of inflation in the AAVSO number is a simple mathematical consequence of
the AAVSO procedure. This means that there is no uncertainty concerning the
existence of inflation (just as Euclid’s theorems can be proven with no uncertainty).

The effect is to cause an inflation in the AAVSO numbers that causes significant
rises on atime scale of decades. For short time-scale analyses, this inflation can safely
be neglected. However, awareness of such systematic errors is vital for any
interpretation of long-term secular changes in the Sun. For example, aspurious
increase in solar activity could be attributed as the cause of the observed global
warming, with profound implications for public policy and public health.

The solutions to this problem are simple and easy: first, deflate the old published
data, and second, change from a linear to a logarithmic average of scaled counts. Also
fundamental is to let researchers know that the old published AAVSO numbers do
have inflation.
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Appendix: Mathematical details

This appendix will prove equations (10), (18), and (21), given conditions in
equations (5)«7).

First, let me demonstrate equation (10) for reasonable distributions. I approached
this by assuming various distributions for D(y,) = D(Y,) and calculating (y /Y. > Any
square distribution, any pairs of delta functions, and any parabolic distribution can be

solved analytlcally to reveal that the mean Value is always greater than unity, while
a Gaussian distribution can be evaluated by a Monte Carlo simulation with the same
result. With four widely different distributions all yielding equation (10) for all second
moments, it seems reasonable to adopt equation (10) in practice.

Nevertheless, let me give a general proof for any distribution that satisfies
equations (6) and (7). Let us expand the mean as integrals over the distributions:

(y/Y),=ldy, [dY,D(y) D(Y) (¥/Y). (22)

This can be separated as
(v/Y),=[ldy,D(y,) y] [dY, D(Y) /Y ]. (23)

The term in the first square bracket is simply (yi>i, which is 1 from equation (6). So
(7/Y)=1dY, D(Y) /Y, =(1/Y).. (24)

Now consider the expression (Y,-1)”/Y,. From equation (7), we know that both the
numerator and the denominator are greater than zero, so their ratio must always be
greater than zero, so the average ratio must be greater than zero:

((Y-DYY,). > 0. (25)
The expression can be expanded as

(Y ADY) = (Y, + (2 +(UY) =1 +(-2)+(1/Y)). (26)

with the <Y> term evaluated from equation (7). Now combining equations (24), (25),
and (26), we find

/Y, > 1, 27)

which is the same as equation (10).

Let me offer a second proof of equation (10). From equation (22), we can rename
variables being integrated over to find

/Y, = (Y3, (28)
Simple manipulation of this equation gives
YIY) = {(3/Y,+ Y/y)2).. (29)

Now, consider the quantity Q= (A/B + B/A)/2 for any positive values of A and B. The
minimum occurs when 0Q/0A = 0 and 0Q/0B = 0 (with the second partial derivatives
positive). The smallest possible value of Q is unity whenA=1andB=1.S0Q>1
as long as A and B are not both exactly equal to unity. Now let us identify y, with A
and Y, with B. Then (y/Y, + Y /y,)/2 will always be greater than unity as long as either
y,or Y do not both equal umty If we average this quantity over the distributions D(Y )
and D(y) then we will be averaging 1 with values greater than 1 (since the posmve
second moments [equations (6) and (7)] ensures that at least some values will have
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Y.# 1 ory,# 1), so the average must be greater than unity. Thus,
<yi/Y’i>i = <(y1/Y1 + Yl/yl)/2>l > 19 (30)

which is equation (10) again.
The proof for equation (18) is similar to this second proof of equatlon (10). The

random variable X, can be expanded as H X4 I Now the average in equation (18) can
be expressed as

<Xilmjxij1/1>i - <Hj(Xil/ Xij)m>i - Hj< (Xil/ Xij)m>i’ (31)
The averages in the last term are all the same, so
(KLY, = (K /%)™ (32)

As in equation (28), we can change integration variable names without effect since the
distributions are the same, so that

(Xyfx ") = (XD, (33)

Simple manipulation then gives
(X)), = (L0 X )™ + (K /)12, (34)

Now let us consider the quantity Q = [(A/B) + (B/A)?]/2, for any positive A, B, and
J. The minimum occurs when 0Q/0A = 0 and 0Q/6B = 0 (with the second partial
derivatives positive). This minimum occurs when A =B, in which case the minimum
Qvalueis 1. So Q> 1 as long as A # B. Now let us identify X, with A and X, with B.

Then the average in the right side of equation (34) is of quantmes thatare equal to unity
Gf X; = X.) and greater than unity (if X; # X,). The non-zero second moments of the
dlstrlbutlon force the case with X; # X to occur in the average, so the average must
be greater than unity:

(/X" + (X /x,)"V2), >1. (35)
With equations (32), (34), and (35), we find
(X /ATx, ™), > 1, (36)

which is just equation (18).
Now to prove equation (21). First let us explicitly write integrals for the means

(log(y,)), = | dy, log(y,) D(y,), 37)
(log(Y))). = JdY, log (Y, D(Y,) = dy.log(y)D(y,) = (log(y,)).. (38)

In the middle part of the last equation, we renamed the variable being integrated over
and used equation (5). Now,

(log(y/Y)); = (log(y)), - (log(Y)), = 0. (39)
This proves equation (21).
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