Checking the Literature

Arne A. Henden
Director, AAVSO
Arne@aavso.org
Reasons

• Don’t reinvent the wheel
• Acknowledge those that came before
• Learn what is known about an object
• Look for new ideas
• Learn how to write
• Get your paper published!
Referee

• Will check references for accuracy
• Will use references for learning about a subject
• Expects good references; otherwise, suspects your research
Two approaches

• Looking for basic information about an object (simbad, vizier, vsx, maillists)
• Looking for research done on an object (simbad, ADS, journals, maillists)
Basic searching - Simbad

- Best starting point for individual objects
- Not perfect - many GSC stars, for example, not catalogued. More up to date info often located elsewhere
- http://simbad.u-strasbg.fr/Simbad
- Mirror at http://simbad.harvard.edu/Simbad
- Also check http://www.aavso.org/vsx/
SIMBAD: Query by identifier, coordinates or reference code

First announcement: Simbad 4 is arriving.

1. **Enter an identifier, coordinates or a reference code:**

 Examples:
 - Sirius, M 31, 12 30 45 +10 20, 1996A&A...315..33K
 - How to write an identifier can be found in the dictionary of nomenclature.
 - UAI format can also be used (Ex: uai 1230+08 Object-type)

 a. **For identifiers**
 you can choose to query:
 - only this object

 b. **For coordinate and around object queries,** define a radius:
 - 10 arc min

 c. **For coordinate queries,** define the input system:
 - epoch:
 - equinox:

 [SUBMIT] [CLEAR]

2. **Optional output options:**

 a. **Lists should contain**
 - all objects.

 b. **# of measurements**
 - from 1983 to 2006

 c. **Display coordinates**
 - Coordinate system:
 - Equinox:
 - Epoch:

©ULP/CNRS - Centre de Données astronomiques de Strasbourg
Object query: simbad search W Vir

Your identifier (W Vir) is translated to: V* W V1R

Available data: Basic data, Identifiers, Plot & image tools, Bibliography, Measurements, External archives

Basic data: HD 116802 -- Variable Star of W Vir type

FK5 2000.0 coordinates 13 26 01.99 -03 22 43.4 [13.91 7.71 101]
FK4 1950.0 coordinates 13 23 26.87 -03 07 09.0 [83.64 43.69 97]
Galactic coordinates 319.57 -58.57
Proper motion (mas/yr) [error ellipse] -3.58 1.78 [1.65 86.86 97] A 1997A&A...323L..49P
B magn, V magn, Peculiarities 10.33 9.69
Spectral type F0Ib...
Radial velocity (v/Km/s) or Redshift (z) -66.5 [2] B 1995NGCM..C....0W

Identifiers (15):

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V* W V1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 116802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSC 40962-00950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIP 65331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYC 3562-550-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAVSO 1320-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 35684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD 310602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM 108502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBVY 196116602 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD-92 3800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G33-1501602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIP 65524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAC 139335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS 4464</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plots and image tools:

Query and Plot around radius 10 arc min.

Aladin Previewer

Aladin Java Applet

References: 91 from 1983 to 2006

display references from 1983 to 2006

Measurements:

<table>
<thead>
<tr>
<th>Name</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(1)</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V*</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRV</td>
<td></td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK</td>
<td></td>
<td></td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>UBVY</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>UBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

display All measurements

External archives:

- Catalogue information from VizieR:
 - V* W V1R
 - HD 116802
 - GSC 40962-00950
 - HIP 65331
 - PM 108502
 - TYC 3562-550-1

Done
Click on a reference to retrieve the related data or select some references and press the Fetch references button.

- 2005A&A...442..595R The evolutionary status of the bright high-latitude supergiant HD 190390. REIJNERS M., CUTPERS J.
- 2005MNRAS.357.233R High-resolution spectroscopy of the high galactic latitude RV Tauri star CE Virgini. RAO N.K., REDDY B.E.
- 2005MNRAS.362.331M Dynamical phasing of Type II Cepheids. MCSAVENY J.A., POLLARD K.R., COTTRELL P.L.
- 2004A&A...420..423F The structure of radiative shock waves. V. Hydrogen emission lines. FADEYEV Y.A., GILLET D.
- 2004AJ..128.2988S The spectra of type II cepheids. III. The H(α) line and helium emission in long-period stars. SCHMIDT E.G., JOHNSTON D., LEE K.M., LAGAN S., NEWMAN P.P., SNEDDEN S.A.
- 2004IBVS.5489....1G Six new southern cepheids. GREAVES J., WILS P., VAN CAUTEREN P.
- 2002PASP..114.1689W The cepheids of population II and related stars. (Invited review). WALLERSTEIN G.
- 2001AJ..122.2017S Polarimetry of 167 cool variable stars: data. SERKOWSKI K., SHAWL S.J.
- 2001BaA&A..30..589A Stars with the largest Hipparcos photometric amplitudes. ADEMAN S.J.
- 2000A&A...353..593A Nonlinear model pulsations for long-period Cepheids. I. Galactic Cepheids. AIKAWA T., ANTONELLO E.
- 2000AJ...120.2865B Kinematics of metal-poor stars in the Galaxy. II. Proper motions for a large nonkinematically selected sample. BEERS T.C., CHIBA M., YOSSIDI Y., PLATAS I., HANSON R.B., FUCHS B., ROSSI S.
- 2000A&A...358..79W The first 50 years at Palomar, 1949-1999 another view : instruments, spectroscopy and spectrophotometry and the infrared. WALLERSTEIN G., OKE J.B.
- 2000JAVSO..29..14P Period changes in population II cepheids: TX Del and W Vir. PERCY I.B., HÖSSLY
Astrophysics Data System

- http://adsabs.harvard.edu
- http://adsabs.harvard.edu/abstract_service.html
- Contains both recent and historical literature
- Recent literature often has restrictions
- Overcome restrictions via preprint, or direct author query
The NASA Astrophysics Data System

The Digital Library for Physics, Astrophysics, and Instrumentation

This site is hosted by

Computation Facilities at the
Harvard-Smithsonian Center for Astrophysics

Search References Browse Library

ADS Services
Search Browse myADS Mirror Feedback FAQ What's new

Other NASA Centers
CXC HIIASARC IRSA LAMBDA MAST NED NSSDC PDS SPITZER

What's new Mirror sites Help Site Map

The Astrophysics Data System (ADS) is a NASA-funded project which maintains three bibliographic databases containing more than 4.7 million records: Astronomy and Astrophysics, Physics, and ArXiv e-prints. The main body of data in the ADS consists of bibliographic records, which are searchable through our Abstract Service query forms, and full-text scans of much of the astronomical literature which can be browsed through our Browse interface. Integrated in its databases, the ADS provides access and pointers to a wealth of external resources, including electronic articles, data catalogs and archives. We currently have links to over 4.6 million records maintained by our collaborators.

Please note that all abstracts and articles in the ADS are copyrighted by the publisher, and their use is free for personal use only. For more information, please read our page detailing the Terms and Conditions regulating the use of our resources.

In addition to its databases, the ADS provides the myADS Update Service, a free custom notification service promoting current awareness of the recent technical literature in astronomy and physics based on each individual subscriber's queries. Every week the myADS Update Service will scan the literature added to the ADS since the last update, and will create custom lists of recent papers for each subscriber, formatted to allow quick reading and access. Subscribers are notified by e-mail in html format. As an option, users can elect to receive updates on preprints published on the ArXiv e-print archive via daily emails or by subscribing to a custom RSS feed.

The ADS personnel are:

- Dr. Stephen S. Murray - Principal Investigator - smur@cfa.harvard.edu
- Dr. Gerhard Eichhorn - Project Scientist - ge@cfa.harvard.edu
- Dr. Michael J. Kurtz - Scientist - mkurtz@cfa.harvard.edu
- Dr. Alberto Accomazzi - Programmer - accomazzi@cfa.harvard.edu
- Carolyn Stern Grant - Programmer - stern@cfa.harvard.edu

Thanks!

This research has made use of NASA's Astrophysics Data System.

The importance of ADS's role in supporting the scientific community has been recognized by societies and individuals. If you wish to acknowledge us in a publication, kindly use a phrase such as the following:

"This research has made use of NASA's Astrophysics Data System."

The ADS personnel are:
ADS Browse Service

The NASA Astrophysics Data System provides different interfaces allowing users to browse its databases.

* Journal/Volume/Page Service
 find a record in ADS cited by journal, volume and page.

* Table of Contents Service
 view the latest tables of contents from the major journals.

* Article Service
 view and print scanned pages of publications digitized by ADS.

* Scanned Historical Literature Service
 view and print scanned pages of Historical Observatory Publications digitized by ADS.

* Scanned Books Service
 view and print selected books digitized by the ADS.
Smithsonian/NASA ADS Astronomy Query Form for

Full Text Search: You can now search the complete text of all scanned articles in the ADS (see link below).

Send Query Return Query Form Store Default Form Clear

Databases to query: Astronomy Physics arXiv e-prints

Authors: (Last, First N, one per line) SIMBAD WEB LPI IAUIC Objects

Exact name matching Require author for selection

OK / AND / simple logic

Publication Date between

(Object name/position search)

Require object for selection

(Combine with: OR AND)

Enter Title Words

(Combine with: OR AND simple logic

Enter Abstract Words/Keywords

(Combine with: OR AND simple logic

Boolean logic)

Return 100 items starting with number 1

Full Text Search: Search OCRd text of scanned articles

myADS: Personalized notification service

Private Library and Recently read articles for

Send Query Return Query Form Store Default Form Clear

Journal/Volume/Page Current Journals Unread Journals

FILTERS

Select References From:

All bibliographic sources
All refereed articles
All non-refereed publications

Select/deselect publications: (comma separated list)

Select References With:

A bibliographic entry
At least one of the following (OR):
Preprint server

- http://xxx.lanl.gov
- Sometimes used for self-publishing; don’t even think about it!
Physics

- Astrophysics (astro-ph new, recent, abs, find)
- Condensed Matter (cond-mat new, recent, abs, find)
- General Relativity and Quantum Cosmology (gr-qc new, recent, abs, find)
- High Energy Physics - Experiment (hep-ex new, recent, abs, find)
- High Energy Physics - Lattice (hep-lat new, recent, abs, find)
- High Energy Physics - Phenomenology (hep-ph new, recent, abs, find)
- High Energy Physics - Theory (hep-th new, recent, abs, find)
- Mathematical Physics (math-ph new, recent, abs, find)
- Nuclear Experiment (nucl-ex new, recent, abs, find)
- Nuclear Theory (nucl-th new, recent, abs, find)
- Physics (physics new, recent, abs, find)
- Quantum Physics (quant-ph new, recent, abs, find)

Mathematics

- Mathematics (math new, recent, abs, find)
- Nonlinear Sciences (nlin new, recent, abs, find)
- Computer Science

Quantitative Biology
Astrophysics

astro-ph new abstracts, Thu, 27 Apr 06 00:00:08 GMT
0604527 -- 0604550 received

astro-ph/0604527 [abs, ps, pdf, other]
Title: Constraints on the Nature of Jets from kpc Scale X-ray Data
Authors: D. E. Harris (SAO), H. Krawczynski (Washington University in St. Louis)
Comments: 5 pages; 3 figures; latex. This paper is based on a poster contribution to the meeting. "Triggering Relativistic Jets", held in Cozumel, MX at the end of March 2005 and will be published via a CD distributed with a special issue of Revista Mexicana de Astronomia y Astrofisica, Serie de Conferencias, eds. W.H. Lee & E. Ramirez-Ruiz, 2006

Motivated by the large number of jets detected by the Chandra X-ray Observatory, and by the inverse Compton X-ray emission model (IC/CMB) for relativistic jets, we revisit two basic questions: If the medium that carries the jet's energy consists of hot electrons, can we use the physical length of the jet to constrain the maximum electron energy? and Why do jets have knots? Based on the two non-thermal emission processes for X-rays from jets, we consider constraints on the jet medium and other properties from these two simple questions. We argue that hot pairs cannot be the dominant constituent of the medium responsible for the jet's momentum flux and that some mechanisms for producing fluctuating brightness along jets (rather than a monotonic decreasing intensity) are precluded by observed jet morphologies.

astro-ph/0604528 [abs, ps, pdf, other]
Title: Minimal Noncanonical Cosmologies
Authors: Gabriela Barenboim, Joseph D. Lykken
Comments: 20 pages, 5 figures, 3 tables

We demonstrate how much it is possible to deviate from the standard cosmological paradigm of inflation-assisted LambdaCDM, keeping within current observational constraints, and without adding to or modifying any theoretical assumptions. We show that within a minimal framework there are many new possibilities, some of them wildly different from the standard picture. We present three illustrative examples of new models, described phenomenologically by a noncanonical scalar field coupled to radiation and matter. These models have interesting implications for inflation, quintessence, reheating, electroweak baryogenesis, and the relic densities of WIMPs and other exotics.

astro-ph/0604529 [abs, ps, pdf, other]
Title: Galactic Warps Induced By Cosmic Infall
Authors: Juntao Shen (UT Austin, Rutgers), J. A. Sellwood (Rutgers)
Comments: Accepted for the publication of MNRAS; 15 pages, including 1 color and 18 blackwhite figures. A movie and the high resolution version are available at this http URL

Recent ideas for the origin and persistence of the warps commonly observed in disc galaxies have focused on cosmic infall. We present N-body simulations of an idealized form of cosmic infall onto a disc galaxy and obtain a warp that closely resemble those observed. The inner disc sits remarkably rigidly, indicating strong cohesion due to self-gravity. The line of nodes of the warp inside $R_L/2.65 \sim 4.5 \, (dL/\delta L)$ is straight, while that beyond $R_L/2.65 \sim 4.5 \, (dL/\delta L)$ generally forms a loosely-wound, leading spiral in agreement with Briggs's rules. We focus on the mechanism of the warp and show that the leading spiral arises from the torques from the misaligned inner disc and its associated inner olate halo. The fact that the line of nodes of most warps forms a leading spiral imply that the disc mass is significant in the centre. If the line of nodes can be traced to very large radii in future observations, it may reveal information on the mass distribution of the outer halo. The warp is not strongly damped by the halo because the precession rate of the inner disc is slow and the inner halo generally remains aligned with the inner disc. Thus even after the imposed quadrupolar perturbation is removed, the warp persists for a few Gyr, by which time another infall event can be expected.

astro-ph/0604530 [abs, ps, pdf, other]
Title: Evidence for TP-AGB stars in high redshift galaxies, and their effect on deriving stellar population parameters
Authors: C. Mannott, E. Daddi, A. Renzini, A. Cimatti, M. Dickinson, C. Papovich, A. Pasquali, N. Pirzkal
Comments: 14 pages, 10 figures, 3 tables, submitted to the Astrophysical Journal

We explore the effects of stellar population models on estimation star formation histories, ages and masses of high redshift galaxies. The
VizieR

- http://vizier.u-strasbg.fr/viz-bin/VizieR
- http://vizier.cfa.harvard.edu/vizier/
- Best source for published data
This Kohonen Self-Organizing Map is based on a neural network analysis of the keywords associated to the catalogues (see Pointz et al., 1998A&A...330..183P; and Lesteven et al., 1999A&A...345..355L).

Each dot marks a map area; colour denotes the density or the clustering tendency of the documents; deep blue areas have the lowest density. Just click any area on the map to get the corresponding list of catalogues found in that area.

Other Installations of VizieR
Some other installation of VizieR could be closer to you, and answer faster:
- CDS, France
- Tokyo, Japan
- IUCAA, India
- CADC, Canada
- Cambridge, UK
- UKIRT-Hawaii, USA
- INASAN, Russia
- Beijing Obs., China

http://www.ukirt.jach.hawaii.edu/vizier/
Specific catalogs

- Downes CV catalog
- Google works wonders
McMaster Cepheid Photometry and Radial Velocity Data Archive

This site contains tables of published photometric data for galactic and extragalactic Cepheid variables. These data are provided with the assistance and permission of the authors. All data files are ASCII. Additional files will be added as time allows. Full descriptions of the original data may be found in the cited papers.

For mean properties, positions, reddenings and cross-references, we highly recommend that you consult the DDO Galactic Cepheid Database. These two sites are complementary.

Click here to try out the MACHO Project Interactive Cepheid P-L Page.

Click here for information on known Milky Way, LMC, and SMC beat (double-mode) Cepheids.

Galactic Cepheids

- Classical Cepheids (Type I)
- BL Her, W Vir Cepheids (Type II)

Extragalactic Cepheids

- LMC
- SMC
- GR 8
- NGC 300

- HST Key Project Archives
 - M81
 - M101
 - M100

Database Statistics

<table>
<thead>
<tr>
<th></th>
<th>Galaxy</th>
<th>LMC</th>
<th>SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Stars</td>
<td>859</td>
<td>128</td>
<td>338</td>
</tr>
<tr>
<td># of Photometry Lists</td>
<td>2046</td>
<td>268</td>
<td>480</td>
</tr>
<tr>
<td># of Radial Velocity Lists</td>
<td>486</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td># of Finder Charts</td>
<td>206</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Specific surveys

• ASAS
• NSVS
• OGLE/MACHO
• SDSS
• TASS
• AAVSO database!
Variable-star journals

- IBVS
- JAAVSO
- Peremennye Zvezdy
 http://www.astronet.ru/db/varstars/
Other resources

• O-C gateway
• Web pages of individual researchers
• Maillists (cvnet, baavss, vsnet, etc.)
• google
Summary

• You *must* do literature searching before writing a paper
• It is easy in the Internet Era
• You will learn from the past
• You will become a better researcher