
THE SUNDIAL AT KITT PEAK

When I was asked to design the sundial in front of the Museum at Kitt Peak I was more than pleased, for it gave me a chance to work a semblance of astronomy into it. The design reflects the great telescope nearby, with its base and fork type mounting, the dial itself being the "telescope". The dial is of the equatorial type; that is, the dial plate lies in a plane parallel to that of the earth's equator. It is made of bronze. Apparent (sun) time is indicated by the shadow of a ball on a rod. The parallel lines vertical to the hour lines are the "lines of declination", drawn here to represent certain times of the year, and hence the shadow of the ball can be made to indicate the day of the year, although on this dial you would have to estimate the day at certain periods. Also you can obtain the time of sunrise and sunset. A table on the rail of the fence enables you to obtain the standard time.

THE PULSAR MECHANISM
Lewis J. Boss, Chula Vista, California

The discovery of pulsars by means of radio astronomy, their subsequent identification optically, and current theories regarding the nature of the pulsar mechanism were described.

OPTICS PROGRAM AT CITRUS COLLEGE
Michael E. Haglund, Azusa, California

Mr. Haglund showed slides illustrating some of the grinding and test equipment used in the course in optical fabrication at Citrus College, Azusa, California. He stated that this is the only college in the country offering a complete program leading to the granting of a degree in optical fabrication.

SUNSPOT COUNTING: SPECIAL EXPERIMENTAL TEST RUNS
David W. Rosebrugh, St. Augustine, Florida

In addition to making regular daily sunspot countings as a Standard Observer for the AAVSO Solar Division, the writer has made a series of experimental runs using various types of equipment and techniques. It should be noted that these special test runs have been made upon the writer's own initiative and not under the aegis of the AAVSO Solar Division. The aims of the runs completed so far have been to try to determine the optimum equipment for use in the American Sunspot Counting Program and to try to determine the equipment and procedures required to make countings having a high correlation with those made at Zurich.

One test of the projection method, involving 104 daily observations was made.

Eight tests of direct observation were made, using refractors equipped with Herschel Wedges and filters. Various