AAVSO: American Association of Variable Star Observers
Login

AAVSO Solar Observers Worldwide (Abstract)

Volume 41 number 1 (2013)

Rodney Howe
3343 Riva Ridge Drive, Fort Collins, CO 80526; ahowe@frii.com

Abstract

(Abstract only) For visual solar observers there has been no biological change in the “detector” (human eye)—at century scales (eye + visual cortex) does not change much over time. Our capacity to “integrate” seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest sunspots, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting sunspot counts for images when compared to the human eye. Also contributing to the complex task of counting sunspots is differentiating between a sunspot (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word “pore” in the solar context: “pore” can mean a small spot without penumbra or “pore” can mean a random intergranular blemish that is not a true sunspot. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). Sunspot size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing sunspot observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will be similar for all low-altitude sites, within the range of 1.5 to 3 arc sec, (typically = 2 arc sec equivalent diameter D = 45–90 mm, the typical solar scope = 70 mm aperture). Where large apertures are more affected by size of turbulent eddies ~8–12 cm, small-aperture telescopes reduce these differences, i.e. large aperture is not always beneficial.