Flux-Calibrating Your Spectra

Concept, Practice, and Discussion for AAVSO Spectroscopy On-Line Meeting

Bob Buchheim Lost Gold Observatory, AAVSO, SAS

Reference: David Boyd (2020): A method of calibrating spectra in absolute flux using V magnitudes https://britastro.org/wp-content/uploads/2021/05/absfluxcalibration.pdf

One way of looking at the relationship between spectrum and photometry

Why flux-calibrate? - • Different view of changes • Combine Spectra + Photometry

Spectral profile:
 Rel Intensity vs λ

 Flux-Calibrated Spectra erg/s/cm²/Å vs λ

Simple: ISIS Command

- Process spectrum as usual, FITS profile of Rel Int vs λ
 - Saved into "working directory"

Then:

- ISIS > Tools
- > Spectra3 menu
- Enter:
 - Rel Int profile file name
 - File name for flux-cal'd file
 - V-mag
 - Select "Bessel V" and "GO"

Writes flux-calibrated FITS profile to Working Directory

Assumptions hidden within ISIS tool

- Low- or medium-resolution spectrograph (e.g. ALPY, LISA)
 - R≈ 500 2000
 - Spectral range spans ≈ 4700 6700Å
- "Simultaneous" V-mag of target

- Your spectrum profile has been corrected for:
 - Instrumental + atmospheric response
 - Rel Int (exo-atmospheric) vs wavelength
 - Normalized (I_{REL} = 1) at some wavelength range

V-band flux from target:

 Multiply: received flux F(λ) times V-band Response function

 $\operatorname{Tgt}_{\operatorname{Flux}}(\lambda) = \operatorname{K}^* \operatorname{Tgt}_{\operatorname{Rellnt}}(\lambda)$

- Integrate over all λ

Assume:

=
$$F_v$$
, in erg/s/cm²

The Math ...

$$I_{Tgt} = K \int Tgt_{RelInt}(\lambda) * Resp_{V}(\lambda) d\lambda$$

$$I_{Comp} = \int Comp_{FluxCal}(\lambda) * Resp_V(\lambda) d\lambda$$

Relative Intensity Tgt Spectrum

Flux-Calibrated Comp Star Spectrum (e.g. CALSPEC Vega, Vmag= 0.03)

$$\Delta V mag = V_{Tgt} - V_{Comp} = -2.5 log \left[\frac{I_{Tgt}}{I_{Comp}} \right]$$

$$10^{\frac{V_{Tgt}-V_{comp}}{-2.5}} * \frac{\int Comp_{FluxCal}(\lambda) * Resp_{V}(\lambda)d\lambda}{\int Tgt_{RelInt}(\lambda) * Resp_{V}(\lambda)d\lambda} = K$$

Use ISIS "ARITHMETIC" and "FWHM" tools to solve for value of K

Flux-calibrated "Comp star" spectra: CalSpec

	NOAO Ind	o-US Library ((CFLIB)		
~	HD2249	926 (B6IV) 🗸	•		
lay	[Dispaly			
			N	IILES library	(IAC)
~				HD22493	0 (G3V)
Display					Display
);//www.stsci.edu.4	et (obsenval	torv/cdbs/cal	spec.html)	Way	velength
Vega Type	= A0V	V = 0.03		[Neon
lay +38:4	:56 7:01			[Argo
Type 18:36 +38:4	= A0V :56 17:01	V = 0.03			[

ISIS - V6.1.1	- 🗆 🗙
1. Image 2. General 3. Calibration 4. Go 5. Profile 6. Gnuplot Masters Tools Misc Instru	ments Settings
Profile name : _hd216831_20220919_271_Buchheim Display	Full ~
	Save
	Header
	Database
	Dispersion
	Response
	Compare
	Continuum
	Edit
	FWHM
	Arithmetic
	H20
	Shift
"Intensity" is in	Normalize
c:\users\bob2\documents\aa temp spectrophot_hd216831_202209 erg/s/cm2/Å 9-19T06:30:32 141 s	Сгор
Wavelength : 4597.578 Intensity : 6.0251E-09 Automatic threshold High level : 1.5 Low level : 0	Filter

The concept & equations are valid even if:

- Your spectra doesn't span full wavelength range of V-band (e.g. my UVEX), or
- You do photometry in tri-color R-G-B, or ...?
- >The equation for K still works (using "your" filter/band and magnitude)!

Summary

- Why flux-calibrated spectra?
- Relationship between Magnitude, Flux, and Spectrum Profile
- ISIS built-in Calculator
- Some Equations ...
- Why V-magnitudes?
 - Purely matter of convenience, and generally good match to Shelyak spectrographs (ALPY, LISA)
 - Same concept/math works with B-band (e.g. my UVEX), or R-G-B tri-color
- Questions? Discussion?

Addendum: David Boyd's equation and mine are actually identical ... he uses the "Zero Point" concept (more astronomical than my equation).

• David defines:

$$F = \int Comp_{FluxCal}(\lambda) * Resp_V(\lambda) d\lambda$$

$$ZP = -V_{Comp} - 2.5 * \log(F)$$

$$A = 10^{[-0.4*(V_{Tgt}+ZP)]}$$

$$R = \int Tgt_{RelInt}(\lambda) * Resp_V(\lambda)d\lambda$$

So that

$$Tgt_{flux}(\lambda) = \left(\frac{A}{R}\right)Tgt_{RelInt}(\lambda)$$

• My equation is: $Tgt_{flux}(\lambda) = K * Tgt_{RelInt}(\lambda)$ • where $K = 10^{\frac{V_{Tgt} - V_{Comp}}{-2.5}} * \frac{\int Comp_{FluxCal}(\lambda) * Resp_{V}(\lambda)d\lambda}{\int Tgt_{RelInt}(\lambda) * Resp_{V}(\lambda)d\lambda}$

• Exercise for the student: show that $\left(\frac{A}{R}\right) = K$

See next slide ...

Hints:

 $A = 10^{[-0.4*(V_{Tgt}+ZP)]}$

Put in the definition of ZP:

$$A = 10^{\left[-0.4*(V_{Tgt}-V_{Comp}-2.5*\log(F))\right]}$$

Use $10^{[a+b]} = 10^{a} * 10^{b}$

$$A = 10^{\left[-0.4 * \left(V_{Tgt} - V_{Comp}\right)\right]} * 10^{\log(F)}$$

Use $10^{[logF]} = F$

$$= 10^{\left[\frac{\left(V_{Tgt}-V_{Comp}\right)}{-2.5}\right]} * F$$

Put in the definition of F

$$= 10^{\left[\frac{(V_{Tgt} - V_{Comp})}{-2.5}\right]} * \int Comp_{FluxCal}(\lambda) * Resp_{V}(\lambda) d\lambda$$

Then use the definition of R to show that David's (A/R) equals my (K). Q.E.D.