IF you cursed at the earlier exercise involving ST Aur, don't try this one. Take a break. (Read the VPhot Guide again!) ;-)

If not, give it a go. It tells you a little about the choice of filters when analyzing difficult variables and options for filters with Mira variables.

Ken

This is a different exercise that shows the impact of filter band on the target, companion and aperture. Last one for the week.

1. Select ST Aur V images. Open this faint image (i.e., 141029, 12:09:19). Load AAVSO comps and VSX targets. Clear any unidentified stars. Delete any saturated comps (2?). Use 132 as check. Change centroid settings under tools to 2-2. Change aperture settings to 2-6-6. Save sequence.

ANS

Deleted comp 106 & 93 as saturated (or almost saturated) stars. Completed sequence and save it.

2. Re-open image. Confirm aperture radius of 2 pixels includes only the target and exclude most of the companion. Zoom in to confirm.

ANS

After image was re-opened, had to apply saved sequence. 2-pixel aperture radius covers most of ST Aur. There is some flux around 4 o'clock extending out 2-pixels from AT Aur.

3. Run a time series of all V images BUT in the first case use a fixed aperture of 2 pixels. Record/report the Max and Min magnitudes.

ANS

Missing parameter specifications for running the Time Series, so set Sequence to the saved sequence from Step 1 in this exercise; aperture set to Fixed, with radius 2.0 pixels; Min. SNR set to 20; Search radius set to 5 pixels; Initial FWHM set to 5 pixels

RESULIS				
Name	Min	Max		
2MASS J06140933+4638387	13.945	14.865		
ST Aur	11.712	14.880		
VZ Aur	10.913	11.069		
132	13.132	13.226		
114	11.381	11.500		

117	11.605	11.714
125	12.380	12.509
137	13.649	13.754
139	13.755	13.961
142	14.171	14.687
147	14.581	14.763
150	14.922	15.109
159	15.756	15.982
159_1	15.509	15.971
162	16.180	16.335

4. BTW, can you run a time series with all the images/filters together?

ANS *No, you can not run a time series with all the images/filters together.*

5. Run a time series of all V images BUT use a fixed aperture of 10 pixels. Record/report the Max and Min.

ANS				
NAME	MIN	MAX		
2MASS J06140933+4638387	13.700	14.493		
ST Aur	11.490	13.407		
VZ Aur	10.903	11.293		
132	13.064	13.438		
114	11.393	11.802		
117	11.593	12.029		
125	12.363	12.734		
137	13.614	14.059		
139	13.739	14.242		
142	13.913	14.447		
147	14.383	14.921		
150	14.743	15.247		

159	14.289	14.998	
159_1	-	-	
162	14.998	15.329	

6. Explain what difference you find?

ANS	
Comp 159_1 could not be calculated.	

If you used too large an aperture for your analyses, would you miss the true V minimum of ST Aur?

ANS		
Yes, it is highly possible.		

7. Repeat this time series process with the same saved sequence (do not create a new one) but use I filter images in this case.

ANS		
Okay.		

8. Record/report both of the Max and Min again.

ANS				
Ran the test using 10 pixels as the aperture fixed radius. RESULTS				
NAME	MIN	MAX		
2MASS J06140933+4638387	12.712	13.189		
ST Aur	8.720	10.143		
VZ Aur	10.526	11.132		
132	12.240	13.050		
114	10.978	11.955		
117	10.429	11.247		
125	11.347	12.549		
137	12.725	13.311		
139	12.997	13.233		

142	13.198	13.198
147	-	-
150	-	-
159	10.987	12.841
159_1	-	-
162	-	-

9. Why is the result quite different?

ANS The results are different due to the filter characteristics.

If you used too large an aperture for your analyses, would you miss the true I magnitude of ST Aur?

ANS *Yes, it is highly possible.*

Does it tell you something about the characteristics of ST Aur and the companion?

ANS			
Yes.			

Why is this target so bright in the I filter?

ANS Different wavelengths of light will have different magnitudes.

Don't worry about the fact that the apertures are not ideal in either case, just try to understand the significant differences in the max and min values for the different filters. Looking at these apertures in a few images at max and min in both filters helps understand. Do not over analyze this crude experiment! Running a long period time series for this target would be a BAD idea! You should analyze the grab samples individually during its full period.