Evolutionary Status of Epsilon Aurigae

Brian Kloppenborg

September 3, 2010
1 Background Material
 - Why we care about stellar evolution
 - The HR Diagram

2 Stellar Evolution in 10 Minutes
 - Single Star Formation and Evolution
 - Binary Star Evolution

3 The Evolutionary Status of ϵ Aur
Why we care about evolutionary state

- Where the star was, what it did there
- Where the star will be going, what it will do
- Testing Nuclear Theory
- The Astrophysical Laboratory
- We are made of stardust
Background Material
Stellar Evolution in 10 Minutes
The Evolutionary Status of ϵ Aur

HR Diagram

![HR Diagram](Image Courtesy of the Museum of Flight)

Image Courtesy of the Museum of Flight

Brian Kloppenborg
Evolutionary Status of Epsilon Aurigae
Single Star Formation

1. Cloud of gas and dust

Images Courtesy of SSC IR Compendium
Single Star Formation

Background Material
Stellar Evolution in 10 Minutes
The Evolutionary Status of ϵ Aurigae

Single Star Formation and Evolution

Brian Kloppenburg

Evolutionary Status of Epsilon Aurigae

Cloud of gas and dust
Gravitational collapse

Images Courtesy of SSC IR Compendium
Single Star Formation

1. Cloud of gas and dust
2. Gravitational collapse
3. Conservation of angular momentum and collisions cause disk to form.

Images Courtesy of SSC IR Compendium
Single Star Formation

1. Cloud of gas and dust
2. Gravitational collapse
3. Conservation of angular momentum and collisions cause disk to form.
4. Envelope has dissipated or collapsed into the disk.
Single Star Formation

1. Cloud of gas and dust
2. Gravitational collapse
3. Conservation of angular momentum and collisions cause disk to form.
4. Envelope has dissipated or collapsed into the disk.
5. Collisions inside disk cause planetesimal for form, clearing the disk of debris.

Images Courtesy of SSC IR Compendium
Single Star Formation

1. Cloud of gas and dust
2. Gravitational collapse
3. Conservation of angular momentum and collisions cause disk to form.
4. Envelope has dissipated or collapsed into the disk.
5. Collisions inside disk cause planetesimal for form, clearing the disk of debris.
6. Star ignites hydrogen in its core.

Images Courtesy of SSC IR Compendium
Mass Dictates Evolution*

Images Courtesy of CHANDRA EPO

* Composition changes evolution too, but it’s a far second compared to mass.
Substellar objects

- No Hydrogen Fusion
- Powered by gravitational collapse, Deuterium (2H or 2D) burning
- Masses below 0.085 M_\odot ($75 M_\oplus$)
- $T_{\text{eff}} \approx 900$ K
- Sometimes Show Stellar-like activity

Brown Dwarf Gliese 229B

Image Courtesy of HST Gallery, PRC95-45 STSCI OPO

American Scientist/Linda Huff
Low-mass Stellar Evolution

- \(M < 0.3 \, M_\odot \) remains on MS for more than \(\tau_{\text{Hubble}} \)

Evolutionary Tracks, adapted from Iben (1967)
Low-mass Stellar Evolution

- $M < 0.3 \, M_\odot$ remains on MS for more than τ_{Hubble}
- $M > 0.3 \, M_\odot$ H in core exhausted, climbs up RGB
- H burning in shell, star swells. He ash falls on core
- He core becomes degenerate
- $M < 0.4 \, M_\odot$ core degeneracy never lifted, becomes He white dwarf

Evolutionary Tracks, adapted from Iben (1967)
Intermediate Mass Stars

- $0.4 < M < 6-10 \, M_\odot$ Degeneracy is lifted (He flash)

![H-R Diagram: Sun's Evolutionary Track](image)

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6 - 10 \, M_\odot$: Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \, M_\odot$: Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \, M_\odot$: Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \, M_\odot$ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \, M_\odot$: Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \ M_\odot$: Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss
- Fusion ceases, star contracts maintaining Luminosity

Image Courtesy of the Museum of Flight
Intermediate Mass Stars

- $0.4 < M < 6-10 \ M_\odot$ Degeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch
- He burning produces C and O ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss
- Fusion ceases, star contracts maintaining Luminosity
- Evolves into planetary nebulae whose core becomes a WD

Image Courtesy of the Museum of Flight
Intermediate-Mass Phase: Post-AGB

- Low to intermediate initial mass (1 - 8 \(M_\odot \)) transitioning between AGB and PN
- Not very well understood
- Fairly short lived \((10^2 - 10^3 \text{ yr})\)
- Often shrouded in dust with silicate or carbonate features in the IR
- Look like Supergiant in many respects
- Detailed Spectral Analysis needed, will reveal s-process elements
- Several Unstable Pulsation Modes
- Good AAVSO Observing opportunity

Evolution of a 2\(M_\odot \) star (Herwig, 2005)
Massive Stars

- $M > 10 \, M_\odot$
Massive Stars

- $M > 10 \, M_\odot$
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
 Envelope cannot respond fast enough.

<table>
<thead>
<tr>
<th>Dominant fuel</th>
<th>T_e</th>
<th>Duration</th>
<th>Important products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>5×10^8 K</td>
<td>10^3–10^4 yr</td>
<td>Ne, Na</td>
</tr>
<tr>
<td>Neon</td>
<td>8×10^8 K</td>
<td>10^2–10^3 yr</td>
<td>Mg, some O</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1×10^9 K</td>
<td>< 1 yr</td>
<td>Si, some S, etc.</td>
</tr>
<tr>
<td>Silicon</td>
<td>3×10^9 K</td>
<td>days</td>
<td>56Ni</td>
</tr>
</tbody>
</table>

Stellar Timescales (Hansen, 2004)
Massive Stars

- $M > 10 \, M_\odot$
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
 Envelope cannot respond fast enough.
- Stars Become Highly Layered
Massive Stars

- \(M > 10 \, M_\odot \)
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
 Envelope cannot respond fast enough.
- Stars Become Highly Layered
- Core Collapse

Layering in Highly Evolved Stars
(Wikipedia Commons)

Layering in Highly Evolved Stars
(Hansen, 2004)
Massive Stars

- M > 10 \(M_\odot \)
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
 Envelope cannot respond fast enough.
- Stars Become Highly Layered
- Core Collapse

Image Credit: Hester (2005) via. HST
Binary Star Evolution
Binary Star Evolution

- Roche Lobes

Roche Lobes (Hansen, 2004)
Binary Star Evolution

- Roche Lobes
- Roche Lobe overflow, mass transfer

Roche Lobe Overflow (Hansen, 2004)
Binary Star Evolution

- Roche Lobes
- Roche Lobe overflow, mass transfer
- Common Envelope Phase

Common Envelope (Iben, 1991)
Other Stellar Evolution Concerns

Single Stars:
- Stellar Composition
- Rotation
- Mixing/Convection

Binary Stars:
- Non-spherical cores
- Tidal Interactions (including Tidal Heating)
The Evolutionary Status of ϵ Aur on the HR diagram
ε Aurigae F-star
Stats:

- Temperature: 7750 K
- Radius: 135 R$_\odot$
- Luminosity: $> 10^4$

Image Courtesy of the Museum of Flight
The Evolutionary Status of ϵ Aur

Summarizing Webbink’s 1985 Review of the Evolutionary State:

- **High-Mass**: Massive star in the post-main sequence star burning Helium in a shell
- **Low-Mass**: Star is contracting towards white dwarf (post-AGB)
F-star Stats

F-star Stats:

- Size: $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
F-star Stats:

- **Size:** $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
- **Spectra:** Appears Supergiant, but

(s-process elements: Sr $+0.72$, Y $+0.39$, Zr $+0.78$, Ba $+0.73$ (Castelli, 1978)

Na is 1000x solar (very odd) (Castelli, 1978)

Masses: 3.6 ± 0.7 (Kloppenborg et al. 2010), 2.2 ± 0.9 (Hoard et al. 2010)
F-star Stats:

- **Size:** $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
- **Spectra:** Appears Supergiant, but
 - $[12\text{CO}/13\text{CO}] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
F-star Stats:

- **Size:** $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
- **Spectra:** Appears Supergiant, but
 - $[12\text{CO}/13\text{CO}] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)
F-star Stats:

- Size: 135 ± 5 R⊙ (Interferometry, SED Fitting)
- Spectra: Appears Supergiant, but
 - [12CO/13CO] = 10 ± 3 (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr +0.72, Y +0.39, Zr +0.78, Ba +0.73 (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)
F-star Stats:

- **Size**: $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
- **Spectra**: Appears Supergiant, but
 - $[12\text{CO}/13\text{CO}] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr $+0.72$, Y $+0.39$, Zr $+0.78$, Ba $+0.73$ (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)
- **Masses**: 3.6 ± 0.7 (Kloppenborg et. al. 2010), 2.2 ± 0.9 (Hoard et. al. 2010)
F-star Stats:

- **Size:** $135 \pm 5 \, R_\odot$ (Interferometry, SED Fitting)
- **Spectra:** Appears Supergiant, but
 - $[^{12}\text{CO}/^{13}\text{CO}] = 10 \pm 3$ (in Disk, Hinkle and Simon 1987)
 - s-process elements: Sr $+0.72$, Y $+0.39$, Zr $+0.78$, Ba $+0.73$ (Castelli, 1978)
 - Na is 1000x solar (very odd) (Castelli, 1978)
- **Masses:** 3.6 ± 0.7 (Kloppenborg et. al. 2010), 2.2 ± 0.9 (Hoard et. al. 2010)

Appears to support the low-mass, post-AGB model
Problems with this interpretation

Problems:
- post-AGB stars often have:
 - Circumbinary disks
 - Period/temperature changes (your observations help here)
 - Molecular and/or crystalline emission lines
- Spectral analysis shows oddities, could be non-LTE?
Remaining Work

- Need a modern spectroscopic analysis
- Look for changing Period and Temperature in/from historical and CS observational data
Acknowledgements

- Citizen Sky Participants
- AAVSO Staff: Rebecca, Aaron, Arne
- Funding: AAVSO, NSF
- Dr. Robert Stencel
- William Hershel Womble Estate