
Chapter 10:  Statistical Concepts 
 

 
Introduction 
 

As you gain experience in observing variable 
stars, your accuracy in estimating magnitudes will 
increase. Nonetheless, there will always be some 
scatter in your data. Doing real science and 
gathering real data always result in measurements 
that have inconsistencies. Science is a process of 
searching for answers that are as yet unknown. 
Therefore we cannot strive for “correctness.” 
Scientists aim for precision—exactness in 
procedure and measurement—so that their results, 
whatever they may be, will be as accurate as 
possible. You will already have noticed in 
preceding activities that even when several 
individuals are measuring the same objects with 
the same measuring tool—be it string, a ruler, or 
the human eye—no one arrives at the exact same 
result. There is no way to avoid scattered data, no 
way to avoid the inconsistencies that come from 
random error. However, there are ways of 
eliminating the most extreme scatter so that your 
data are still accurate enough to be useful. 
 
The world of science is one of continuous 
discovery. The excitement of discovery is in not 
knowing the correct answer before you start, 

and—most of the time, anyway—not 
knowing the exact answer after you finish. In 
most areas of science,  making observations 
is but a tiny part of the discovery process. 
The bulk of the effort goes into extracting and 
analyzing meaningful information from 
observational data. 
 
When dealing with quantitative data, statistics 
is the ideal mathematical tool to allow you to 
express the validity of your data, to view 
them from different perspectives, and 
evaluate their precision and quality. The 
following examples will help to explain 
fundamental statistical concepts, some of 
which you may already know. 
 

Miranda Read, artist 

Miranda Read, artist 
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Investigation 10.1: Finding the Average 
 

 
1. Make the following two sets of measurements: the height and the arm length, in 

centimeters, of all the people in your classroom. For each person in the class, take 
three separate measurements of their height and their arm length and take the two 
averages. Did you all get the same arm length and height for each individual in 
the class? If you worked individually or in small groups, discuss with your 
classmates the procedures you used to take the measurements and calculate the 
averages. Discuss the differences in measuring techniques. 

 
2. Obtain the average of the measurements taken for your height and arm length (in 

centimeters) from all of your classmates and enter them in Table 10.1. Compare 
the measurements. Are the measurements close together or far apart? How large is 
the scatter? What are some of the possible sources of random and/or systematic 
error which could have contributed to the differences in the results of the 
measurements? 

 
3. Calculate the classroom average for your height by adding all the measurements 

in Table 10.1 together and dividing by the total number of measurements. Repeat 
the same calculation for arm length. Enter these two values, along with your name 
on line 1, in Table 10.2. Enter the calculated averages and names for the rest of 
the class. Add the measurements for heights and divide by the total number of 
measurements. You now have the average height for the entire class. Repeat the 
procedure to determine the average arm length for the class. 
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Table 10.1:  Individual Averages 
 
Name: 

Measurement from classmate: Height (cm) Arm Length (cm) 

#1   

#2   

#3   

#4   

#5   

#6   

#7   

#8   

#9   

#10   

#11   

#12   

#13   

#14   

#15   

#16   

#17   

#18   

#19   

#20   

#21   

#22   

#23   

#24   

#25   

AVERAGES:   
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Table 10.2:  Classroom Averages 
 
Names: Height (cm) Arm Length (cm) 

#1   

#2   

#3   

#4   

#5   

#6   

#7   

#8   

#9   

#10   

#11   

#12   

#13   

#14   

#15   

#16   

#17   

#18   

#19   

#20   

#21   

#22   

#23   

#24   

#25   

AVERAGES:   
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Core Activity 10.2: Constructing a Histogram 
 

 
The histogram is one of the most important tools of elementary statistics. The histogram 
is a graph illustrating how likely it is to find any particular result in a set of data. In 
appearance, a histogram is similar to a bar graph. We begin by taking all possible results, 
and dividing them into ranges called bins. Then we count how many of the data points 
fall into each range. Finally, we divide each count by the total number of data points, to 
give us the relative frequency. Relative frequency is an estimate of the probability that 
any given data point will fall within this range. This method of graphically representing 
data is a powerful tool for analyzing a set of data (see Figure 10.1 below). 
 
 
 
 
 
 

Constructing a histogram will allow you to visually examine the distribution and scatter 
of your data points. It is a quick way to assess the precision of a set of data and decide if 
the distribution of data is typical. You will be able to determine if the scatter of the data 
set is large or small, and how precise the measurements were. To construct a histogram, a 
data set has to be divided into equal groups, or bins. It will require some thought as to 
how a set of numbers should be divided into bins. To help make this decision, use the 
following rules: 
 
 

a. Each bin has to be of equal value. 
 

b. Each number falls into one and only one bin. 
 

c. No number falls on the boundary or “in between” a bin. 
 

d. At least 5 bins are necessary for a good representation of the data. 
 
 

Figure 10.1 
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EXAMPLE: 
 
Consider the following set of twenty numbers: 
 
0.3, 0.5, 0.7, 0.6, 0.3, 0.5, 0.4, 0.1, 0.6, 0.1, 0.2, 0.8, 0.4, 0.7, 0.6, 0.3, 0.4, 0.5, 0.2, 0.5 
 
The smallest number is 0.1 and the largest is 0.8. We need to arrange these numbers into 
at least five equal bins, and each of the numbers has to fall into a bin. A simple way to 
have equal bin values would be to center the first bin over the value of 0.1 and the last bin 
over the value 0.8. This ensures that all the numbers will fall into a bin and not on the 
boundaries between any of the bins. Therefore the value of each bin would range from 
.05 less than each number to .05 more than each number. If the first bin is centered on .1, 
the bin value would be .05 to .15. So we will have 8 bins which have values of: 
 
[.05 –.15], [.15 –.25], [.25 –.35], [.35 –.45], [.45 –.55], [.55 –.65], [.65 –.75], [.75 –.85] 
 
These bin values will be on the horizontal axis of our histogram. On the vertical axis is 
the relative frequency. To determine the relative frequency, we need to determine, by 
counting, how many of the data points in our set of numbers above falls into each bin. 
 
Bin 1  [.05 –.15]  – 2 
 

Bin 2  [.15 –.25]  – 2 
 

Bin 3  [.25 –.35]  – 3 
 

Bin 4  [.35 –.45]  – 3 
 

Bin 5  [.45 –.55]  – 4 
 

Bin 6  [.55 –.65]  – 3 
 

Bin 7  [.65 –.75]  – 2 
 

Bin 8  [.75 –.85]  – 1 
                         _____ 
 
               total:     20 
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To determine the relative frequency with which each number occurs, the number of data 
points that falls into each bin is divided by the total number of data points; that is, the 
frequency of numbers which fall into Bin 1 is equal to 2 (0.1 occurs twice in the data set) 
divided by 20, or 0.1. For our 8 bin values above the relative frequencies are: 
 
Bin 1:   2 divided by 20  =  0.10 
 

Bin 2:   2 divided by 20  =  0.10 
 

Bin 3:   3 divided by 20  =  0.15 
 

Bin 4:   3 divided by 20  =  0.15 
 

Bin 5:   4 divided by 20  =  0.20 
 

Bin 6:   3 divided by 20  =  0.15 
 

Bin 7:   2 divided by 20  =  0.10 
 

Bin 8:   1 divided by 20  =  0.05 
         _____ 
 
                                  total:  1.00 
 

 
Notice that the relative frequencies all add up to 1. This is because of the definition of 
relative frequency. It is the bin count, divided by the sum total of all the counts. So the 
sum of the relative frequencies is the sum of the counts, divided by the sum of the 
counts—which of course equals 1. 
 

The relative frequencies and bin values can now be used to construct the histogram below. 
 

 
Figure 10.2 
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1. Using all of your height measurements from your classmates in Table 10.1, 
determine an appropriate number of bins, and the bin values. Enter the bin values 
in Table 10.3. Calculate the relative frequency of each measurement and enter it 
in Table 10.3. Use the information in Table 10.3 to construct a histogram. 

 
Table 10.3 

 
 

Bin Value 
 

 
# of Data Points 

 
Relative Frequency 

 
 
 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
TOTALS: 
 

  

 
 
 

2. On your histogram, mark the midpoint of the top of each bar (bin value) with a 
dot, and connect the dots with a smooth curve, as in the example histogram 
(Figure 10.3) on the following page. 
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Figure 10.3 
 
 

3. You now have a visual summary of your data. The resulting curve should be 
reasonably close to a symmetrical bell-shape. This is referred to as a normal 
curve, meaning that your data set follows a normal distribution and your 
measurements are reasonably precise. (There is an extended explanation of the 
normal curve on page 172 of this chapter.) Discuss possible factors which might 
have contributed to the amount of scatter. 
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Core Activity 10.3: Finding the Average Deviation 
 

 
1. In Chapter 6 you compiled a set of magnitude estimates for Variable Star X in 

Table 6.6. You can now use this data set for statistical analysis. (If your class has 
collected a sufficient number of actual variable star observations, you may use 
those data instead.) Using either the information on Star X from Table 6.6 or your 
classroom observational data, transfer the data to columns [A] and [B] in Table 
10.4. Then complete columns [C] and [D] using the data from Table 6.6. You are 
entering the JD, your magnitude estimation, the number of classroom estimates, 
and the class averages of the estimations for Star X. You will need to calculate the 
class average for each Julian Date. 

 
2. The next column [E] in Table 10.4 is labeled “Range.” The range is simply the 

difference between the smallest and largest value in a set of data. Refer back to 
Table 6.6, which lists the estimates of the magnitude of Star X for the entire class. 
For each JD, look at the estimates in the row; find the smallest and largest values 
and take the difference between the two values. Enter the result in column [E]. 

 
3. You are now ready to calculate the class average deviation by using the Star X 

information in columns [B] and [D] from Table 10.4. 
 

a. For the first JD magnitude estimation, determine the difference of your 
observation from the class average and take the absolute value. This is 
your individual deviation. (You will use these numbers again in Core 
Activity 10.4.) 

 
b. Add together the individual deviations for the entire class for the first JD 

estimation, and divide the sum by the number of observations. This is the 
average deviation. Enter the result into column [F] in Table 10.4. 

 
c. Repeat for all the remaining magnitude estimates. 

 
Determining the range gives you an idea of the amount of variability or scatter in the 
values within the data set. The range gives a general idea of the variation; there are other 
methods of analyzing the data that are more “sensitive” than the range—that is, they give 
a more detailed look at how much each data point deviates from the average. The most 
basic method of expressing the spread of the data in quantitative terms is called the 
average deviation. 
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Table 10.4 
 
 
Name of Variable Star: 
 
Data point [A] 

Julian 
Date 

[B] 
Magnitude 
of Star 
(your 
estimate) 

[C] 
# of  class 
obser- 
vations 

[D] 
Class 
Average 

[E] 
Range 

[F] 
Average 
Deviation 

[G] 
Standard  
Deviation 

[H] 
Standard 
Error of 
Average 

1         

2         

3         

4         

5         

6         

7         

8         

9         

10         

11         

12         

13         

14         

15         

16         

17         

18         
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Study the two hypothetical data sets in Table 10.5 above. The first row shows the 
frequency distribution of each data point, the second shows the calculated average, and 
the third row shows the calculations for determining the distance each data point is from 
the average. This number is calculated by subtracting the average from each number. The 
distance from the average is called the deviation from the average. 
 

To calculate the average deviation, drop the negative signs from the third row above. Use 
the absolute value of the numbers (they are all treated as though they are positive). Then 
the absolute values of each number are added together, and the sum is divided by the 
number of data points. 

 
For Sample 1 above: 

 

 2  +  1  +  0  +  1  +  2   =   6    =   1.2 
5                        5 

 

For Sample 2 above: 
 

1  +  0  +  0  +  0  +  1   =   2    = 0.4 
5                        5 

 

Now relate these results to the dot diagram showing frequency distribution in Table 10.5 
on the previous page. Sample 1 has an average deviation of 1.2, showing that there is a 
larger spread in the data set than there is in Sample 2, which has a lower average 
deviation of 0.4. Sample 2, with a lower average deviation, must have less variation or 
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scatter in the data: all of the data are close to the average. Conversely, Sample 1 has a 
larger range and the data are not as closely centered to the average. 
 
In summary, to calculate the average deviation: 
 
 

1. Calculate the average of the data set. 

2. Subtract the average from each data point to get the difference. 

3. Take the absolute value of each difference. 

4. Add the absolute values together. 

5. Divide the sum of the absolute values by the number of data points. 
 
 
In mathematical terms, the process described above is represented by the following: 
 

Σ  | xi - x |  
       n 
 

where xi = the value of each data point 
x = the average of all the data points 
Σ = the Greek letter sigma, meaning “sum of” 
n = the total number of data points 
|  | = the “absolute value of” 
 

 
You will calculate the Standard Deviation [G] for Table 10.4 in Core Activity 10.4 and 
the Standard Error of the Average [H] in Core Activity 10.5. 
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Hands-On Universe 
 
Hands-On Universe (HOU) is a program that enables high school students to request their 
own observations from professional observatories. HOU students download Charge 
Coupled Device (CCD) images to their classroom computers and use HOU's powerful 
image processing software to visualize and analyze their data. The HOU program 
collaborates with telescopes in Hawaii, Illinois, California, Washington, Sweden, and 
Australia to form a network of automated telescopes for educational use. Student requests 
are processed by the network to decide which telescope is best suited for the particular 
request, considering weather, geography, scheduling, and equipment. The network 
provides fast turn-around for student requests and allows real-time observing in certain 
cases because of the location of the telescope in various time zones. A key component of 
the HOU project is student research and investigation. Many students have used HOU to 
explore astronomical phenomena and have written web-based reports of their work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Miranda Read, artist 
 

 

 
 
 
 
 
 

Cerro Tololo Observatory in Chile 
 
Students have a chance to work with scientists on 
original research projects, such as the HOU 
Asteroid Search. The asteroid search uses images 
from the Berkeley Cosmology Project, which is 
composed of a team of scientists searching for very 
distant supernovae. They use world-class telescopes 
such as the Cerro Tololo International Observatory 
(CTIO) in Chile to search for type Ia supernovae 
near the edge of the visible universe. The scientists 
share their data with HOU classes so that students 
can search for very faint asteroids in the same 
regions of the sky. To date, five previously 
unknown asteroids have been recorded by HOU 
students. 
 
The HOU website is: http://hou.lbl.gov 



AAVSO Variable Star Astronomy – Chapter10 

Hands-On Universe classes are involved with several research projects, including 
searching for supernovae and asteroids, creating H-R diagrams from images of open star 
clusters, and performing photometric measurements of Cepheid variable stars. One HOU 
project report is summarized below. (used with permission from Hands-On Universe, Lawrence 
Berkeley Laboratory) 
 
Calculating Distance for Cepheid Variable Stars 
 
by Adam A. Bier-high school student (http://hou.lbl.gov/studentreports/adamcv/cv.html) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Normalization was achieved by calculating Norm Factor based on ratio between known 

Reference Star brightness (in Joules/second/meter2) and an image Reference Star brightness 
(in pixel counts). 

• Period of Cepheid: 8 days (as shown in the graph below). 
• Apparent brightness of Reference Star: 2.28 x 10–12 J/s/m2 (used as B2 in the table above). 
• Average apparent brightness of Cepheid: 6.1915 x 10–13 J/s/m2 (calculated by taking the sum 

of the normalized brightness values and dividing it by 8, the number of values; shown as C4 
in the table above). This gives E, the real or absolute Cepheid brightness. 

• Luminosity of Cepheid: 1.71 x 1029 J/s (calculated by using the period-luminosity relationship 
to get luminosity in Solar Units, 3000, then converting that into J/s by multiplying it by         
5.7 x 1025). This gives P, the period. 

• Distance to Cepheid in meters using the 
light/distance equation: 
E = P / (4 π d2) 
6.915 x 10–13 = 1.71 x 1029/ (4 π d2) 
6.915 x 10–13 x (4 π d2) = 1.71 x 1029 
8.690 x 10–12 x d2 = 1.71 x 1029 
d2 = 1.97 x 1040 
d = 1.40 x 1020 meters 

• Distance to Cepheid: 14,800 light-years 
(calculated by dividing the distance in 
meters by 9.46 x 1015). 
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Core Activity 10.4:  Variance and the Standard Deviation 

 
 
Using variance and standard deviation is an even more meaningful method of measuring 
data variability than average deviation. 
 

A. The determination of the variance differs from average deviation in the following 
manner. Instead of taking the absolute value to eliminate the negative signs, the 
deviations are squared. Then, instead of being divided by the number of data points, the 
sum of the squared values is divided by the number of data points minus one.  Referring 
back to Table 10.5, the variance for Sample 1 is as follows: 
 
(–2)2,    (–1)2,   (0)2,    (1)2,    (2)2   =  4  +  1  +  0  +  1  +  4  =   2.5 
              ( 5 – 1)                                     4 
 

 
The variance for Sample 2: 

 
(–1)2,   (0)2,   (0)2,   (0)2,   (1)2         = 1  +  0   +  0  +  0  +  1  =   0.5 
              ( 5 – 1)                                      4 

 
B. The standard deviation is the positive square root of the variance. Therefore for 

sample 1 the standard deviation (SD) is: 
 

SD  = √ 2.5  =  1.6 
 

For sample 2: 
 

SD  = √ 0.5   =  0.71 
 

Comparison: 
 

Sample 1  –  average deviation   =  1.2,  SD  =  1.6 
 

Sample 2  –  average deviation   =  0.5,  SD  =  0.71 
 

The standard deviation shows a larger deviation than the average deviation leads us to 
believe. While this may seem a strange and confusing way of measuring variability, try to 
understand this method in the following way. If you ignore the square root for a moment 
and just consider the variance, this expresses the average of the squared differences between 
the values and the average, rather than the average of the absolute differences. 
 
Squaring the differences causes the expression to be dominated by the largest differences, 
while the comparatively small ones become insignificant. This has the net effect of 
emphasizing large deviations from the average, while de-emphasizing small ones. For 
example, 2 squared  =  4, while 5 squared  =  25, a much larger number. Squaring the larger 
number makes a larger impact. As a result, the expression inside the square root is 
considerably more “sensitive” than the average deviation. 
 



AAVSO Variable Star Astronomy – Chapter10 

In summary, to calculate the standard deviation: 
 
 

1. Calculate the average of the data set. 
 

2. Subtract the average from each data point to find the difference. 
 

3. Eliminate the negative signs and square the differences. 
 

4. Add the squared differences together. 
 

5. Divide the sum by the number of data points minus one. 
 

6. Take the square root of the result. 
 
 
The numerical expression for this method is as follows: 

variance  =   Σ  (xi –  x )2 

                              n – 1 
 
and standard deviation (SD) =  the square root of the variance, therefore: 
 
 

SD  =      Σ  (xi –  x )2 

                              n – 1 
 

 
where xi = the value of each data point 

x = the average of all the data points 
Σ = the Greek letter sigma, meaning “sum of” 
n = the total number of data points 

 
 

1. To calculate the standard deviation for the Star X data: 
 

a. Using the individual deviation numbers you calculated for the first JD 
magnitude estimation from (3a) in Core Activity 10.3, square the number. 

 

b. Add together the squared numbers for the first JD estimation for the entire 
class, and divide by the number of data points minus one. This is the 
variance. 

 

c. Take the square root of the variance. This is the standard deviation. Enter 
into column [G] in Table 10.4. 

 

d. Repeat for all the remaining magnitude numbers. 
 

√ 
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Remember, when observations are relatively precise (low variability), the standard 
deviation is very small. When the observations have poor precision (large scatter), 
then the standard deviation becomes much larger. 

 

2. Compare your values in Table 10.4 for average and standard deviation. Compare 
your results with those of your classmates. Did the standard deviation change 
between the first and last point in Table 10.4? If so, what reasons can you 
suggest? 

 

3. Find the range and the standard deviation again with only half of the class 
observations. How does the size of the sample affect the range and the standard 
deviation? Can you determine that standard deviation is a better indicator of 
variability than the range? How? 

 
 
Standard Deviation and the Normal Curve 
 
Standard deviation also has many other useful applications. Statisticians have created a 
model for random events called the normal distribution. This mathematically describes 
the likelihood of obtaining a certain value in an experiment, depending on how many 
standard deviations from the accepted average that value lies. If you connect the midpoint 
of the tops of each bar in a histogram, you will get a curve. A bell-shaped curve that 
closely matches the distribution of many large sets of numbers is called the normal curve 
or bell curve. For example, the odds of a coin-toss resulting in “heads” is 50–50, or half 
of 100 tosses. But if you toss a coin 100 times and keep track of the number of times you 
get “heads,” you probably will not get “heads” exactly 50 times. But if you repeat the 
experiment 1000 times (100,000 coin tosses in sets of 100 each), and then draw a relative 
frequency histogram for the number of times you get “heads,” a normal curve will result. 
The likelihood of a measurement being within a certain number (Z) of standard 
deviations from the average is assessed by finding the area under the bell curve between 
the points (–Z) and (Z). Statistical tables exist which give the area between (–Z) and (Z) 
for a range of possible Z’s. The area is given in percent (%) and should be interpreted as 
the probability that a value will fall within Z standard deviations of the average. 
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In a bell-shaped histogram, we would expect about 68% of the data to lie within one 
standard deviation (the interval x ± 1 SD), and almost 100% within three standard 
deviations (the interval x ± 3 SD). 
 

To understand what this means, consider the following set of data: 

4.0,  3.9,  4.1,  4.0,  4.2,  3.9,  3.9,  4.1,  3.8,  4.0, 

with an average  =  4.0  and a standard deviation  =  0.12. 
 
If the measurements follow the normal distribution, then approximately: 
 

a) 68% of the measurements fall between 4.0 +  0.12, or between 3.88 and 4.12; 
 

b) 96% of the measurements fall between 4.0 +  (2 x 0.12), or between 3.76 and 4.24; 
 

c) 99.8% of the measurements fall between 4.0  +  (3 x 0.12), or between 3.64 and 
4.36. 

 
For any set of data to appear to be normal, the number of data points should be large—at 
least 30—and the larger the better. Then and only then an analysis of Z should be made to 
determine if the distribution is normal or not. The example we just considered is not a 
good representation of a normal distribution, even though it may give a normal curve, 
because the data points are fewer than 30. So let us assume that we had a large number of 
observations and came up with a normal curve. Now the question is, why is it so 
important to have a normal curve? 
 
This concept is critical to assessing the validity of measurements, since it helps to detect 
errors. Almost 100% of the data will fall within three standard deviations of the average, 
so if we get a measurement of 4.4 in our sample data, we can assume that the 
measurement is probably false. However, we have to be very careful to determine 
whether there is any valid reason to discard this measurement. Not all unlikely 
measurements are incorrect. To determine the validity of the results, the standard error of 
the average is calculated. 
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Core Activity 10.5:  The Standard Error of the Average—The Error Bar 
 

 
There is a mathematical calculation of the uncertainty of the average for a set of data. 
Since the average is calculated using a set of data that has error, the error of the average 
also needs to be calculated. The standard error of the average is the measure of how 
close to the exact value the average is likely to be. It is determined by dividing the 
standard deviation by the square root of the number of measurements. In mathematical 
terms: 
 

Standard deviation of the average =   SD 
 

√ n 
 

For the sample data set above (4.0, 3.9, 4.1, 4.0, 4.2, 3.9, 3.9, 4.1, 3.8, 4.0) SD = 0.12 and 
the number of observations (n) = 10. 
 
Therefore 0.12/ √10  =  + 0.038 
 
This value is used as the value of the error bars commonly seen on scientific graphs. To 
draw the error bar for this data point, you would draw a vertical line through the point on 
the graph with a 0.038 magnitude length above the point and a 0.038 magnitude length 
below the point, to produce the required .076 magnitude length for the entire bar (the error 
ranges from 0.038 to +0.038). 
 

 
 
 
 
 Exercise:  Calculate the standard deviation of the average for the class data points for Star 

X and enter the result in column [H] of Table 10.4. You will use this 
information in the following chapter. 

magnitude 
 

         Time (JD) 
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Mythological Evidence for Ancient Observations of Variable Stars 
(Adapted from a paper by Stephen R. Wilk, published in the journal of the AAVSO, Volume 24, 1996, pp. 
129–133.) 
 
     The known history of variable stars begins with David Fabricius' 1596 observations of omicron Ceti 
(Mira, "the Wonderful"). The eclipsing variable star Algol was first noted by Gemiani Montanari in 1667, 
but its period of 2.867 days was not measured until the 1783 work of Nathaniel Pigott, John Goodricke, and 
Johann Georg Palitzch. 
     However, there has long been suspicion that knowledge of 
variable stars extends much farther back in time. The variability 
of Algol or Mira is suggested in ancient Babylonian and 
Chinese texts. The names applied to Algol—Demon's Head," 
"Head of the Gorgon," "Lilith,"  "Satan,"  or  "The Piled-up 
Corpses"—have a vaguely evil ring to them, which suggests 
ancient knowledge of peculiar properties. Another indication of 
ancient knowledge of Algol's variability is its rarely-cited Hindu 
name, Mayavati, meaning "The Changeful." 
     A case has been made for ancient Greek knowledge of 
variable stars on the basis of Greek mythology. Perseus, son of 
Zeus and Danae, was sent by the tyrant Polydectes to obtain the 
head of a Gorgon. Perseus first visited the Graeae ["Grē'-ay"], 
sisters of the Gorgons. The Graeae had the form of old women, 
and had only one eye that they shared in common. Perseus 
intercepted the eye as they passed it from hand to hand, and 
promised to return it if they gave him directions to the home of 
the Gorgons. They did so, but according to some accounts, 
Perseus threw the eye into Lake Tritonis in Africa, so he could 
safely escape. 
     Perseus went to the island of the Gorgons and found them asleep. Two of them, Stheno and Euryale, 
were immortal, but the third, Medusa, was not. Perseus struck off Medusa's head and stuck it in his bag. 
From the severed neck sprang the winged horse Pegasus and the warrior Chrysaor, Medusa's children by 
Poseidon. The noise roused the other Gorgons, but Perseus was able to escape. As he returned home, 
Perseus passed over Ethiopia and saw Princess Andromeda chained to a rock as a sacrifice to Cetus, the 
sea-monster. Perseus went to Andromeda's parents, King Cepheus and Queen Cassiopeia of Ethiopia, and 
offered to save Andromeda, provided she was given to him in marriage. They agreed. Perseus rescued 
Andromeda and slew Cetus, but Cepheus and Cassiopeia later plotted against Perseus, and he turned them 
to stone with the Gorgon's head. 
     The constellation of Perseus has been associated with the mythological character of that name since at 
least the fifth century BC. Later illustrations generally show Algol forming one of the Gorgon's eyes, but 
Roman and Arab authors call the star the head or face of the Gorgon. A more reasonable interpretation of 
the periodic fading of Algol is that it represents Perseus cutting off Medusa's head and placing it in his bag. 
     Algol B eclipses Algol A approximately every third day. This could explain why there are three Gorgon 
sisters, and why only Medusa is mortal. The two days during which Algol is not eclipsed represent the two 
immortal sisters, Stheno and Euryale. Medusa is the third day, during which the star is eclipsed, and the 
Gorgon "loses her head." 
     The eclipsing of Algol can be interpreted another way within the same myth. The three Graeae are 
virtual doubles of the Gorgons-they are both sets of three sisters, and they share the same parents. Maybe 
they, rather than the Gorgons, are the actual monsters from a parallel version of the myth, in which the task 
set to Perseus was to steal the eye of the Graeae. The fading of Algol in this case represents Perseus 
intercepting the eye (Algol) as it is passed from one sister to another. 
 

Perseus, Philippe La Hire, 1705 
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     There is an interesting corollary to 
this interpretation. The spectacular 
Perseid meteor shower every mid-
August appears to originate from the 
arm of the constellation of Perseus. It is 
very easy to see in the display Perseus 
hurling the eye of the Graeae into Lake 
Tritonis. 
     It is also notable that the 
constellations representing characters in 
the myth of Perseus and Andromeda are 
grouped so close together in the sky 
(Figure 1). Most of these constellations 
harbor naked-eye variable stars. Three 
of them are so noticeable that they have 
given the names to their types. Algol, 
the preeminent example of eclipsing 
variables, has already been mentioned, 
as has Mira (omicron Ceti), the first 
historical variable star to be officially 
discovered. 
     Goodricke, co-discoverer of Algol, 
also discovered delta Cephei, the prototype for Cepheid variables. One must also note that gamma 
Cassiopeiae, the center star of the "W" of Cassiopeia, is an irregular variable star which varies between 1.6 
and 3.1. Besides Algol in Perseus, that are naked-eye variable stars in the constellations of Cetus, Cepheus, 
and Cassiopeia. These are all constellations representing Perseus' enemies in the myths. In addition, Cetus 
is the mother of both the Gorgons and the Graeae. 
     Evidence of this sort can never be certain, but the set of coincidences strongly suggests that the ancient 
myth-makers and proto-astronomers knew of the variability of Algol, Mira, delta Cephei, and gamma 
Cassiopeiae, and on that basis associated their constellations together in a common myth. 
     There are other myths and interpretations associated with Perseus. One of the oldest and most peculiar 
images associated with Perseus, the birth of Chrysaor and Pegasus from the neck of Medusa, is first 
referred to in one of the most ancient Greek poems extant-Hesiod's Theogeny. The real meaning of this old 
myth is apparent from the constellations of Perseus (with Medusa's head) and Pegasus. If Hesiod's words 
mean that Pegasus and Chrysaor sprang from the stump of the neck that is attached to the head, rather than 
from the stump attached to the body, then the scene is pictured in that grouping of stars. The constellation 
of Perseus stands in for the person of Chrysaor, springing to the East. Pegasus, the winged horse, faces and 
springs to the West (Figure 2). 

     The correlations between the 
variations of Algol and elements of the 
myth of Perseus and the Gorgon suggest 
ancient knowledge of that variability. 
The further association of surrounding 
constellations, which contain most of the 
naked-eye variable stars visible from 
Greece, with characters in the same 
myth, suggests that these variable stars 
were also known in preclassical Greece, 
whence the myths arose. 
 

 
 

 
Figure 2. 

Figure 1. 
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Activity 10.6:  Statistical Analysis of Delta Cephei 

 
 
If you have classroom observational data for delta Cep, use them to repeat the above 
processes of calculating the average and range, constructing a histogram, and calculating 
average deviation, variance and standard deviation, and the standard error of the average. 
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MATH TALK 
 
Have you ever heard the expression, “Four out of five doctors recommend...?” Or “... 
42% more relief from heartburn”? Or “...better highway mileage than any other sub-
compact hatchback sedan costing under $10,000 made in America”? 
 

Perhaps you suspected that these claims were not completely true. It is wise to be 
suspicious, because statistics (and numbers in general) can be manufactured to make any 
idea sound convincing. When used properly, statistics is a powerful tool for uncovering 
truth; when used improperly, it can be manipulated to prove almost anything. 
 

Try, try again 
 
There are lots of ways to misuse statistics. One way is perseverance: if at first you don’t 
succeed (i.e., get the result you wanted), try, try again. Suppose you want to claim in a 
TV commercial that 4 out of 5 dentists recommend your toothpaste. You ask 5 dentists, 
but only 1 of them recommends your brand. So, forget you ever asked them! Ask another 
5 dentists! This time, 2 of them recommend your brand. Forget them! Ask another 5! 
Keep trying until, by random fluctuation, you get lucky and 4 out of 5 recommend your 
brand. Then, show your TV commercial. Whatever you do, do not talk about the 13,925 
dentists you had to survey before you got lucky, and don’t mention that only 8% of them 
recommended your brand. 
 

Sometimes this sort of thing happens even to honest people. If the results do not match 
our theory, it is too easy think of a “good” reason to believe that the data we do not like 
are not valid, so we have to do the experiment again. This happens far too often in 
scientific research, even today. Despite people’s best intentions to be fair, there is just too 
much temptation to rationalize away the “bad” data. However, you rarely see any 
scientists rationalize away the “good” data, the data which support their theories! 
 

Here we have the first lesson of honest statistics: you cannot ignore the data that do not fit 
your theory. Sometimes you have good reason to believe some piece of data should be 
excluded because it is just a mistake. But in your scientific report, you have to say so, and 
state exactly why it has been omitted. You can exclude data if you have good reason, but 
you cannot ignore them, or fail to report them. 
 

How many? 
 
A nursing home recently tried new procedures designed to reduce the number of 
accidental injuries to patients. They were pleased to announce that in the first four months 
of the year, patient accidents were down a whopping 60% compared to last year. Can’t 
argue with that! 
 
Or can you? How many are we talking about here? If last year there were 50 accidents, 
and this year only 20, then they are down 60%, and there is no doubt that this result is 
statistically significant. The chance of that happening by random fluctuation (“by 
accident”) is less than 1 in 10,000. 
 

But suppose there were 5 accidents last year, and only 2 this year. Yes, they are down 
60%. But no, this result is not significant. The chances are better than 1 in 4 that this 
could happen by random fluctuation. 
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We have already seen that as we acquire more data, our results become more precise. 
They also become more reliable. Sometimes, an early result is based on so little data that 
it has no real significance. Do not put too much faith in statistical results (not even a 
whopping 60%) until you know how much data went into them. 
 
Survey says! 
 
Suppose two politicians are debating a school funding bill. They both try to show that the 
public is on their side by conducting a survey. Politician A wants to show that people 
favor the bill, so his survey asks, “Should we invest more in our children’s future by 
passing the school funding bill?” Lo and behold, people do want to invest in their 
children’s future, so most people say yes, and politician A announces that the vast 
majority favor his bill. 
 

Politician B wants the bill to fail, so his survey asks, “Should we raise taxes to fund more 
and bigger government bureaucracy by passing the school funding bill?” Not 
surprisingly, people do not want higher taxes and more bureaucracy, so they mostly say 
no, and politician B claims that the vast majority oppose the bill. 
 

This may seem like an exaggerated example, but it is not. This actually happens! Almost 
every political survey is deliberately designed to get a specific response. The questions 
are usually phrased to make the desired response sound good, while making the undesired 
response sound very bad. By doing so, the questions bias the subject’s opinion about the 
topic of the survey. Not surprisingly, whoever paid for the survey usually gets the 
response they want. Politicians are not the only ones who do this. Advertising surveys are 
carefully designed to make the company product look good while making the competition 
look bad. 
 

Even if you are trying very hard to be fair, it is actually quite difficult to phrase the 
question in a way that does not influence anyone’s response. There are other ways 
surveys can go wrong, too; designing an accurate survey is a very difficult task, requiring 
much expertise. There are some organizations that do it well; for example, the Gallup 
organization specializes in conducting fair, scientifically reliable surveys. Still, it is an 
unfortunate fact that most surveys just cannot be trusted (especially political and 
advertising surveys). 
 
What are you trying to prove? 
 
It happens regularly that a government agency or private commission launches a major 
study of an important social issue. Too often they begin by announcing that they are 
going to prove some theory, which has important consequences for social policy. You 
can bet big money that they will find proof. After all, they have already made up their 
minds! 
 

Any study which begins by assuming the correct answer, then looks for proof, will fail to 
give serious consideration to the possibility that the assumed “correct answer” is not 
correct. Any scientist who has already decided before the experiment that one result is 
“right” and another is “wrong” is no scientist at all. 
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It is very hard to avoid all bias when taking data. That is why we work very hard to make 
our experiments double blind: we arrange that neither the scientists taking data, nor their 
subjects, know how the data will affect the outcome. For example, suppose we want to 
study the effectiveness of a new headache pill. We give half our subjects the new 
medication, while the other half get an inert sugar pill. We have to be sure that the 
subjects do not know which one they are getting. We also have to be sure that the 
scientists taking the data also do not know (at least until all the data are in). Otherwise, 
there is far too much temptation to “nudge” the data the way we want them to go. 
 
Accidents happen 
 
We have said that the standard of “unlikeliness” in statistics is 0.05, or 5%, or a 5% false-
alarm probability. This means that if we do a scientific experiment, and get a result that’s 
only 5% likely to happen by accident, we have evidence that it is not an accident. We can 
write our results in a scientific paper, and every statistician will agree that our evidence is 
significant. 
 

So we have evidence, but we do not yet have proof. After all, there is a 5% chance that it 
did happen by accident. Accidents do happen! In fact, an accident that is only 5% likely 
will happen about 5% of the time. After all, with a 5% false-alarm probability, we will 
get some false alarms. 
 

Suppose a university employs 100 scientists, and each one does a different scientific 
experiment. From probability theory, we expect 5% of them to get a result that’s only 5% 
likely, by accident! So just by accident, about 5 of the 100 scientists will get evidence that 
they can call “statistically significant” and publish in a scientific paper. 
 

And they do have evidence, strong enough that their claim deserves further study. But 
they do not have proof. That is one of the reasons scientific experiments have to be 
repeated. If you get a “significant result” once, you have evidence. If two people get the 
same result, there is very strong evidence. If a dozen people do the same experiment, and 
they all get a significant result, then we can start to believe it. 
 

Every year, scientists do hundreds of thousands of experiments. If they use a 5% false-
alarm probability (and most of them do), we can expect 5% of the results to be false 
alarms. Five percent of 100,000 experiments is 5,000 false alarms! That means 5,000 
results that seem to be significant, but really happened only by accident. Some of them 
will be published in important scientific journals. And they should be published: they are 
all possibilities, and deserve further study. But for most of them, we should not be 
convinced until the results are repeated. 
 
Conclusion 
 
We have seen that if you want to deceive people, statistics makes it easy. In fact, even if 
you want to be honest, there are so many things that can go wrong in an experiment or a 
survey, that we must carefully guard against bias. Even if we succeed, and get an 
unbiased result which is “statistically significant,” it still might have happened just by 
accident. So the experiment has to be repeated, many times, and each time requires the 
same care in guarding against any bias which could affect the results. 
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That is a lot of work! Still, the payoff makes it well worth it. Not doing so gives us half-
baked theories which sound good but really are not, supported by biased data and invalid 
statistics. This is worse than ignorance! But if we invest the effort to do science well, we 
reap the reward of knowledge that we can trust, and often can put to very good use. 
 
 
 
 
 
 


