
Chapter 12:    Variable  Stars  and Phase Diagrams
 

Introduction 
 
When the same cycle repeats over and over as 
regularly as clockwork, we refer to this as periodic 
behavior. If we want to know what is happening at 
any moment, it does not matter which cycle we are 
observing, because every cycle is exactly the same. 
What does matter is which part of the cycle we are 
observing. So if a star (or any other phenomenon) is 
perfectly periodic, then its variation depends only on 
where it is in its cycle, a quantity called the phase. 

A good example is an accurate clock. If it is a 24-
hour clock (with an AM/PM indicator), it repeats 
exactly the same behavior, over and over, with a 
period of 1 day. Each day the clock goes through one 
cycle, and each cycle is just like every other cycle. If 
we want to know what the clock reads, we do not 

need to know which day it is (which cycle it is in), we just need to know the time of day 
(how far we are into the cycle). 

Phase in Cycles 

In the case of the clock, we might measure “how far into the cycle” it is in terms of hours 
and minutes, with the cycle starting at 00:00 and ending at 24:00. Of course, 24:00 (the 
end of the cycle) is also 00:00 on the next day, because the end of one cycle coincides 
with the beginning of a new one. 

However, phase is measured in cycles, rather than in hours or minutes. Since phase is 
measured in cycles, of course a single cycle starts at 0 and ends at 1. In this case, the 
phase is simply the fraction of the cycle which has been completed so far. Thus a phase 
of 0.5 corresponds to 0.5 of the way (50%, or halfway) through the cycle, a phase of 0.2 
is 20% (one-fifth) of the way through the cycle, etc. A phase of 1 is 100% of the way, the 
end of the cycle; it is also the beginning of the next cycle, so it is phase 0 of the next 
cycle. 

To compute the phase in terms of cycles, we need to know how long each cycle is—in 
other words, we need to know what the period is. For the clock, we can express the phase 
in hours and minutes. But to express the phase in terms of cycles, we need to know that 
each cycle (each day) is 24 hours. That way, at noon, when we are 12 hours into the 
cycle, we know we are 12/24 = 0.5 of the way through, meaning that the phase is 0.5. 
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Investigation 12.1: Periodic Cycles 
 

Cycles have no real beginning and no real end—they are continuous. Study the 
continuous light curve for V Cas on the opposite page. Cut out the sections and tape them 
together to see the behavior of V Cas from JD 2440000 to JD 2450000. If you use just 
two sections, do you still have a representation of the star’s behavior? With just one 
section? Your instructor will give you a transparency of the same light curve. Can you cut 
the sections in any place and still have the same behavior pattern? Stack several sections 
over each other. Determine how small a segment is needed to give the same information 
and all four segments. What if you only had one cycle of the light curve? What if you start 
your cycle at maximum? Minimum? Describe your results. 
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A New Beginning 

The clock cycle starts at midnight, because timekeepers have chosen to start each new day 
at midnight. But this is an arbitrary choice. Other cultures start a new day at sunrise or 
sunset, rather than at midnight. If the day (the cycle) starts at sunrise (say, 6:00 AM), then 
we are not halfway through the cycle at noon (12:00), so the phase is not 0.5. We may have 
12 hours on the clock, but because we agree that our cycle starts at 6, we are only 12 - 6 = 6 
hours into the cycle. That is 6/24 = 0.25 of the cycle (25%, or one fourth), so the phase is 
0.25. Therefore, to compute phase we also need to know the starting time of the cycle. This 
is known as the epoch. For the clock, the epoch is usually midnight, but some people prefer 
to start their cycles at some other time. 

These two quantities, the period and epoch, enable us to compute the phase at any given 
time. Suppose the epoch (start of the cycle) is at time t0, and the period is P. What is the 
phase at some other time t? First we find how far we are into the cycle, by simply 
subtracting the starting time: 

t – t0 

This is the phase, in time units. To get the phase in units of cycles, we simply divide this 
by the period: 

φ = t – t0 

 

The symbol φ is the Greek letter “phi,” which is used to represent the phase (in cycles). In 
the case of the clock, with the cycle starting at 6 AM, the period is P = 24 (hours) and the 
epoch is t0 = 6. At noon (t = 12), the phase is: 

φ = t – t0    =   12 – 6   =   6   =   0.25 

 

P 

 

P              24          24 
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0 = 1 (yes, zero equals one) 

Let’s go back to starting each new day at midnight, so for our clock the period is P = 24 
12) the phase is 0.5 (halfway), and at the following midnight (t = 24) the phase is 1 (end 
of the cycle). What about the following noon? 

In this case the time is t = 36; it has been 36 hours since our “epoch.” The phase is: 

φ     =  36 – 0   =   1.5 

 

But something is not right here. We said that phase was “how far along we are in the 
cycle,” and that it did not matter which cycle, so it should be the same, every noon. But 
this phase (φ = 1.5) is not the same as that of the previous noon (φ = 0.5). 

Or is it? We could say that φ = 1.5 is “one-and-a-half cycles,” or we could say that it is 
“halfway through the next cycle.” Since we are not interested in which cycle, we ignore 
the “next” part, and say “halfway”; thus the phase is 0.5. 

In fact, whenever we compute a phase, we can make it into a “standard” phase by simply 
ignoring which cycle. If the phase is φ = 3.11 (a little more than three cycles), we are 11% 
of the way through three cycles later. We will ignore the “three cycles later” part, note 
that we are 11% of the way through a cycle, and say the phase is 0.11. All standard 
phases are between 0 and 1. 

When phase is expressed in cycles, it is easy to identify which cycle: it is just the integer 
part of the phase, or cycle number. For a phase φ = 3.11, the integer part (3) tells us that 
we are dealing with cycle 3, and 0.11 of 3.11 tells us we are partway through cycle 3. 
Since a standard phase ignores this, we can simply ignore the integer part of the phase 
(telling us which cycle). What really counts is the decimal part of the phase (how far into 
the cycle). So we will modify the above equation, and say that the (standardized) phase is 
the decimal part of what we had before: 

φ = decimal part of      t – t0 

 

What this means is that a phase of 1 (start of next cycle) is really the same as a phase of 0 
(start of this cycle) or a phase of 3, or 17, or 256. Any two phases which differ by an 
integer are really the same phase. Phase 1.5 is the same as phase 0.5, phase 12.336 is the 
same as phase 0.336, and yes, 0 = 1. 

This may seem strange, but it is actually mathematically sound. We are simply taking all 
numbers modulo 1. We can still do arithmetic, still compute numbers, but we always 
ignore the integer part of whatever we end up with. This kind of arithmetic is known as 

24 

P 

 

[ ] 
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modular arithmetic. In modular arithmetic, modulo 1, we can quite validly state the 
following equation: 

0 = 1 = 2 = 3 = 4 = ... 

Negative Phases 

One thing to be careful of is negative phases. For the clock example (P = 24 and to = 0), 
let us compute the phase at 6 AM three days previously. In this case the time is t = -66 (it 
is 66 hours before our epoch), so the phase is: 

φ     =  –66 – 0   =   –2.75 

 

To convert this to a standard phase, we cannot “just ignore” the –2 and call it 0.75. If we 
did that, we would also be ignoring the minus sign. So we will just remember that we are 
doing arithmetic modulo 1, which allows us to add or subtract any integer without really 
changing the result. Let us add 3:  φ  = –2.75 + 3.00 = 0.25. This does fall in the range 0 to 
1, so this is the standard phase. 

Folded Light Curves 

Take a look at the following light curve of the Cepheid-type variable X Cyg (Figure 
12.1). All observations were made by AAVSO observer LX. There are enough data that 
we can see an up-and-down variation, which turns out to be periodic with a period of 
16.285 days. Still, there are only a few observations for each cycle, so it is difficult to tell 
exactly what the shape of a cycle is. 

 

Figure 12.1 

 

24 
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It would be nice if we could superimpose all the cycles on top of each other. We would 
like to plot each data point, but instead of plotting the time, we would like to plot “how 
far it is into the cycle.” That way, all the cycles will be “folded” on top of each other, and 
we may have enough data to give us an accurate picture of what the cycle looks like. We 
already have a name for “how far into the cycle”: we call it the phase. For a variable star, 
we can do exactly the same thing we did with the clock. Find the period P, choose an 
epoch t0, and we can compute the standard phase for any time t. Then we can plot a light 
curve, but instead of plotting magnitude as a function of time, we will plot magnitude as a 
function of phase. This will give us what is called a folded light curve, or phase diagram. 

Let’s use the period 16.285 days, and choose as a starting point JD 2,447,400 (an 
arbitrary choice). Then we can take each observation and convert the time into phase. 
Plotting brightness as a function of phase, we have the following folded light curve 
(Figure 12.2): 

 

 

 

 

 

 

 

 

 

Figure 12.2 

Now we can see what the shape of the cycle is. There is a very rapid rise from minimum 
to maximum, followed by a much slower decline from maximum to minimum. 
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Core Activity 12.2: Folded Light Curve of the Variable Star SV Vul 
 

You are now ready to construct a folded light curve, or phase diagram, using the 
observations of a Cepheid variable given in the following table. 

 

Table 12.1 
SV Vul Magnitude Measurements (1987–1989) 

 
Julian Date  Mag. Julian Date  Mag. 
 
2447011.6  7.0  2447458.5  6.9 
2447023.6  7.5  2447475.5  7.8 
2447040.6  7.9  2447492.5  7.9 
2447066.5  7.4  2447505.5  7.2 
2447091.4  7.0  2447529.5  7.9 
2447103.6  7.2  2447707.6  7.9 
2447124.6  7.8  2447722.6  6.7 
2447171.5  7.9  2447747.6  7.8 
2447308.6  7.9  2447769.5  6.8 
2447338.6  7.8  2447778.5  7.1 
2447374.6  7.0 2447800.5  7.9 
2447390.6  7.9 447821.6  7.0 
2447404.5  7.8  2447832.5  7.5 
2447413.5  6.8  2447848.5  7.9 
2447421.5  7.2 2447857.4  6.8 
2447444.5  7.9  2447868.5  7.2 

 

 

1. Construct a graph with the magnitude on the vertical axis and phase on the horizontal 
axis. Determine the appropriate magnitude scale from the data in Table 12.1. Since all 
standard phases are between 0 and 1, choose a scale for the phase axis which goes 
from 0 to 1. 

2. We defined the phase as the decimal part of [(t–to)/P], where to is the epoch and P is 
the period. Take the JD of the very first observation as the epoch, so to = 2447011.6. 
Then the first observation occurs at the start of the cycle (we chose our epoch that 
way), so we already know the phase of the first observation: it is at phase 0 (start of 
the cycle). The magnitude of the first observation is 7.0, so plot a point on your graph 
at phase 0 and magnitude 7.0. 
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3. For all the other observations, we apply our formula for computing phase. First we 
take the time of the observation and subtract the epoch time t0. For the 2nd data point, 
this gives 

   2447023.6 (time of observation t)                                                                                                                                                                            
– 2447011.6 (time of epoch t0) 

12.0           (time difference) 

Then we divide by the period P. For SV Vul, the period is P = 44.8 days. This gives 

12.0 / 44.8 = 0.2679 

Then we take the decimal part of what we get. Since this result is already between 0 
and 1, it is already a standard phase. So for observation #2, the phase turns out to be 
0.2679. For plotting purposes, we can round this off to 0.27. 

Repeat this process for every data point, computing the standard phase. When you 
have computed all the phases, plot each data point at the correct phase and magnitude. 

4. Draw a smooth curve showing the trend of the data. Do most of the data lie near this 
smooth curve? This is a test of the period. Lots of scatter with no obvious trend would 
show that the measured period is not correct. The correct period should produce a 
phase diagram whose scatter is about the same as the scatter in the raw data (usually 
about 0.2 magnitude). 
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Double Your Fun 

Look again at the folded light curve of X Cyg (Figure 12.2). It is a little difficult to see 
the behavior near minimum, because the picture is “broken” at phase 0 = 1, leaving a 
gap in the graph. It would be nice if we had a clear picture of the entire cycle, with no 
breaks. 

We can, if we use the fact that phase is a modular quantity, modulo 1. So a phase of 0 is 
the same as a phase of 1, and the same as a phase of -1. A phase of 0.133 is the same as a 
phase of 0.133 – 1 = -0.867. A phase of 0.58 is the same as 0.58 - 1 = -0.42. For each 
time, let us compute not just one phase, but two phases. We will compute the standard 
phase, which is always between 0 and 1, and we will also compute the “previous cycle 
phase (φ' ),” which will be between -1 and 0. If the standard phase is φ, then the “previous 
cycle phase” is φ' = φ – 1. 

Note that this “previous-cycle phase” will end up being negative. We already learned how 
to change a negative phase into a standard phase. Now we are changing a standard phase 
into a negative phase! But not just any negative phase will do. A proper “previous-cycle 
phase” has to fall in the range of -1 to 0, just as a proper “standard phase” must fall in the 
range 0 to 1. It is easy to compute, if you just remember to take the standard phase and 
subtract 1 to give the proper “previous-cycle” phase. Always compute the standard 
phase first, then subtract 1 to get the previous-cycle phase. 

We will plot magnitude as a function of phase, but we will plot each data point at both 
phases, the standard phase and the “previous-cycle” phase. In effect, we will be plotting 
each data point twice, and since our phases now run from -1 to +1, we will have a nice 
picture of not one, but two complete cycles. Now it is easy to see what the star is doing at 
any point of its cycle, because we have an unbroken graph (Figure 12.3): 

 

 

 

 

 

 

 

Figure 12.3 

When astronomers plot folded light curves, they almost always plot two complete cycles, 
with phase extending from -1 to +1, in order to give a clear picture of the shape of the 
entire cycle. 
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Core Activity 12.3: Another Folded Light Curve of SV Vul
 

 

Table 12.1 
SV Vul Magnitude Measurements (1987–1989) 

 
Julian Date  Mag. Julian Date  Mag. 
 
2447011.6  7.0  2447458.5  6.9 
2447023.6  7.5  2447475.5  7.8 
2447040.6  7.9  2447492.5  7.9 
2447066.5  7.4  2447505.5  7.2 
2447091.4  7.0  2447529.5  7.9 
2447103.6  7.2  2447707.6  7.9 
2447124.6  7.8  2447722.6  6.7 
2447171.5  7.9  2447747.6  7.8 
2447308.6  7.9  2447769.5  6.8 
2447338.6  7.8  2447778.5  7.1 
2447374.6  7.0 2447800.5  7.9 
2447390.6  7.9 447821.6  7.0 
2447404.5  7.8  2447832.5  7.5 
2447413.5  6.8  2447848.5  7.9 
2447421.5  7.2 2447857.4  6.8 
2447444.5  7.9  2447868.5  7.2 

 

 

You are now ready to construct a second phase diagram of SV Vul, this time computing 
two phases for each point, and plotting a folded light curve showing two complete cycles. 
 
1. Construct a graph with magnitude on the vertical axis and phase on the horizontal 

axis. Determine the appropriate magnitude scale from the data in Table 12.1. Since we 
will be plotting two cycles in our folded light curve, our phases will run from -1 to +1. 
Choose a scale for the phase axis which goes from -1 to 1.  

 
2. We defined the phase as the decimal part of [(t-to)/P], where to is the epoch and P is 

the period. Take the JD of the very first observation as the epoch, so to =2447011.6. 
Then the first observation occurs at the start of the cycle (we chose our epoch that 
way), so we already know the phase of the first observation: it is at phase 0 (start of 
the cycle). The magnitude of the first observation is 7.0, so plot a point on your graph 
at phase 0 and magnitude 7.0. 
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3. For all the other observations, we apply our formula for computing phase. First we 
take the time of the observation and subtract the epoch time t0. For the 2nd data point, 
this gives 

 
   2447023.6 (time of observation t) 
– 2447011.6 (time of epoch t0) 

                   12.0 (time difference) 
 

Then we divide by the period P. For SV Vul, the period is P = 44.8 days. This gives 
 

 12.0 / 44.8 = 0.2679 
 

Finally, we take the decimal part of what we get. Since this result is already between 
0 and 1, it is already a standard phase. So for observation #2, the phase turns out to be 
0.2679. For plotting purposes, we can round this off to 0.27. 

 
Repeat this process for every data point, computing the standard phase for each data 
point. 
 

4. Now compute the “previous cycle phase” for each data point. To do so, simply take 
the “standard phase” you just computed, and subtract 1. You now have two phases for 
each data point, a standard phase between 0 and 1, and a previous-cycle phase 
between -1 and 0. 

 
5. Plot each data point at its correct magnitude, and at both phases (so each observation 

gives two points on the graph). 
 
6. Draw a smooth curve showing the trend of the data. You should be able to discern 

two complete cycles of variation in the graphs. Do most of the data lie near this 
smooth curve? This is a test of the period. Lots of scatter with no obvious trend would 
show that the measured period is not correct. The correct period should produce a 
phase diagram whose scatter is about the same as the scatter in the raw data (usually 
about 0.2 magnitude). 
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Start from the Top 
 
For X Cyg in Figure 12.1, we chose as our epoch, or starting point, JD 2,447,400, just 
because it was convenient. However, astronomers prefer to choose an epoch so that the 
maximum occurs at phase zero. So let us take as our epoch the time of one of the 
maxima, JD 2,447,403.0. Then our folded light curve has its maximum right at phase 0 
(Figure 12.4): 
 

 
 

Figure 12.4 
 

This is the standard folded light curve for a variable star. It plots two complete cycles, 
with phase running from –1 to +1, and the epoch is chosen so that maximum occurs at 
phase zero. 
 
There is one exception to this rule: eclipsing binary stars. For eclipsing binaries, the 
minimum brightness (which usually occurs in the middle of the eclipse) is the part we are 
really interested in, so we choose the epoch so that phase zero is minimum rather than 
maximum. 
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Core Activity 12.4: Yet Another Folded Light Curve of SV Vul 
 

 
 

Table 12.1 
SV Vul Magnitude Measurements (1987–1989) 

 
Julian Date  Mag. Julian Date  Mag. 
 
2447011.6  7.0  2447458.5  6.9 
2447023.6  7.5  2447475.5  7.8 
2447040.6  7.9  2447492.5  7.9 
2447066.5  7.4  2447505.5  7.2 
2447091.4  7.0  2447529.5  7.9 
2447103.6  7.2  2447707.6  7.9 
2447124.6  7.8  2447722.6  6.7 
2447171.5  7.9  2447747.6  7.8 
2447308.6  7.9  2447769.5  6.8 
2447338.6  7.8  2447778.5  7.1 
2447374.6  7.0 2447800.5  7.9 
2447390.6  7.9 447821.6  7.0 
2447404.5  7.8  2447832.5  7.5 
2447413.5  6.8  2447848.5  7.9 
2447421.5  7.2 2447857.4  6.8 
2447444.5  7.9  2447868.5  7.2 

 
 
 
You are now ready to construct a “standard” phase diagram. Estimate the maximum by 
inspecting the data in Table 12.1, and choose an epoch so that the maximum occurs at 
phase 0. 
 
1. Construct a graph with magnitude on the vertical axis and phase on the horizontal 

axis. Determine the appropriate magnitude scale from the data in Table 12.1. Since we 
will be plotting two cycles in our folded light curve, our phases will run from –1 to 
+1. Choose a scale for the phase axis which goes from –1 to 1. 

 
2. We defined the phase as the decimal part of [(t–to)/P], where to is the epoch and P is 

the period. The brightest of all the observations is the estimated magnitude of 6.7 on 
JD 2447722.6. Take this as a rough estimate of the time of maximum, and use it as 
your epoch: to = 2447722.6. 
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3. For each observation, apply the formula for computing phase. First we take the time 
of the observation and subtract the epoch time t0. For the 1st data point, this gives 

 
   2447011.6 (time of observation t) 

  – 2447722.6 (time of epoch t0) 
                -711.0 (time difference) 

 
Then we divide by the period P. For SV Vul, the period is P = 44.8 days. This gives 

 
- 711 / 44.8 = -15.8705 

 
Finally, we take the decimal part of what we obtain. Since this result is negative, we 
remember to add an integer to make the sum fall between 0 and 1. Adding 16, we get 
the standard phase as φ = 0.1295. Repeat this process for every data point, computing 
the standard phase. 
 

4. Now compute the “previous cycle phase” for each data point. To do so, simply take 
the “standard phase” you just computed, and subtract 1. You now have two phases for 
each data point, a standard phase between 0 and 1, and a previous-cycle phase 
between –1 and 0. 

 
5. Plot each data point at its correct magnitude, and at both phases (so each observation 

gives two points on the graph). This is the standard folded light curve. 
 
6. Draw a smooth curve showing the trend of the data. You should be able to discern 

two complete cycles of variation in the graphs. Does the maximum lie at phase 0? 
This is a test of the epoch; if the maximum is noticeably different from phase 0, then 
the epoch is not quite correct. Do most of the data lie near this smooth curve? This is 
a test of the period. Lots of scatter with no obvious trend would show that the 
measured period is not correct. The correct period should produce a phase diagram 
whose scatter is about the same as the scatter in the raw data (usually about 0.2 
magnitude). 
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The Discovery of SS Cygni 
 
 
(Adapted from a paper entitled "The Centennial of the Discovery of SS Cygni " by Martha L. Hazen, 
published in the Journal of the AAVSO, Volume 26, 1997, pp. 59–61. Dr. Hazen is the Curator of 
Astronomical Photographs at Harvard College Observatory. Additional information about SS Cygni was 
provided by the technical staff of the AAVSO.) 
 
In the Harvard College Observatory Circular No. 12, signed by Edward C. Pickering and dated November 
2, 1896, there appeared a listing entitled "New Variable Stars in Crux and Cygnus." The last paragraph of 
the listing reads: 
 

In addition to the above objects a star 
in the constellation Cygnus, whose 
approximate position for 1900 is R.A. 
= 21h38m.8, Dec. +43o8 has been found 
to be variable by Miss Louisa D. 
Wells. Its period appears to be about 
40 days and its photographic 
brightness varies from 7.2 to fainter 
than 11.2, an unusually large range for 
a variable having so short a period. 

 
Miss Louisa D. Wells was one of the 
women "computers" hired by E.C. 
Pickering to work with the Harvard 
photographic plates. All the original 
research notebooks kept by the 
"computers" are stored at the Harvard 
University Deposit Library, and a 
complete list of the notebooks is available 
at the Plate Stacks of the Harvard 
Observatory. Curiously, Miss Wells's 
notebooks, necessary for her work, are not 
in the collection. Her supervisor at the 
time made no mention of the discovery. 
 
 
The earliest plate intentionally taken of SS 
Cyg is plate I 15990, taken with the 8-inch 
Draper refractor located on the grounds of 
the Observatory in Cambridge, MA. The 
plate was taken on September 23, 1896, 
according to the record book. The entry in 
the "Object" column says "Susp. var." and 
the first word is crossed out and "L.D. 
W.'s" written above. 
 
The earliest plate still extant was taken on September 24, 1890 (see Figure I a; a hand drawn arrow points 
to SS Cyg in roughly the center of the photo), when SS Cyg was at or near minimum. Figure 1 b is a plate 
taken on October 30,1890, when the star was in outburst. 
 
 
 

   Figure 1 b. SS Cygni in outburst. 

      Figure I a. SS Cygni near minimum. 
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The complete details of the discovery of SS Cyg may never be known, but with its discovery began a long 
period of visual observations so complete that an outburst of this well-studied star has never been missed. 
 
SS Cygni is one of the most famous variables in the sky. It is an eruptive variable of the U Geminorum 
type. Like most U Gem stars, SS Cyg is part of a spectroscopic binary system-a close system with a cool 
main sequence star orbiting a white dwarf. The cool star loses matter from its surface, which accumulates 
in an accretion disk around the white dwarf. For as yet not well understood reasons, the disk becomes 
unstable and the disk material spirals towards the white dwarf triggering a small nova-like eruption in this 
dwarf nova system. (Hence the name of dwarf novae given to U Gem variables.) Every few weeks, on 
average, SS Cyg brightens from magnitude 12 to magnitude 8. At minimum, it can be observed with a 
small telescope. At maximum, it can be observed with binoculars. 
 
SS Cyg is a spectroscopic binary consisting of dwarf G and subdwarf B spectral class components. The 
orbital period is 6 hours and 38 minutes; however, no eclipses are observed so the plane of the orbit must 
be considerably inclined to the line of sight. In other words, from our perspective here on Earth, one star 
does not pass in front of or behind the other. Spectroscopically, the system alternates between the spectrum 
of the dwarf G (5520K) during minimum and the subdwarf B component during maximum. As the star 
rises to maximum, the spectrum changes progressively to that of the subdwarf B star (12,000K). 
 
Visual observations of SS Cyg have become particularly important since it was discovered from satellite 
observations that SS Cyg is an extreme ultraviolet, and X-ray emitter. The satellite users depend on visual 
observers to tell them when the star is bright and active, and therefore worthy of further observation by 
satellite. Observations by amateur astronomers are necessary because the period of SS Cyg is not 
predictable. The rise to maximum is generally quite rapid, but by no means uniform. Some outbursts are 
quite short in duration. The light curve of other outbursts may be quite flat for several days at maximum. It 
then gradually slopes until a more rapid decline sets in. Occasionally there is a slight brightening before the 
actual maximum, and at other times there is a change from a steep slope to a more gradual one during the 
decline. 
 
The minimum is the star's quiescent time. At times the light curve is quite flat and at other times quite 
irregular, with occasional rises in magnitude to at least magnitude 10.0 or brighter, preceding regular 
maximum. 
 
SS Cygni has had over 700 outbursts since its discovery in 1896 and not one outburst has gone undetected. 
Statistical studies have shown that there are correlations between light curve characteristics such as the 
brightness and duration of outbursts and the interval between them. If you wish to study these correlations, 
you may through the HOA Website-request long term data of SS Cygni from the AAVSO International 
Database. 
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Activity 12.5: Folded Light Curves of Star X and Delta Cep 

 
 
 
1. If you have completed Core Activity 6.5 in Chapter 6 and calculated the period for 

Star X, you may now use your own estimated period for Star X as the period P, and 
take the brightest single observation as a rough estimate of the epoch to, or time of 
maximum. 

 
2. Using this period and epoch, and your data for Star X, follow the same procedure as 

in Core Activity 12.4. You will end up with a standard folded light curve of Star X. 
 
3. Study the resulting diagram. Is your period accurate? Is there a lot of scatter? Is the 

epoch accurate? Is the maximum at (or near) phase 0? 
 
4. Construct another standard folded light curve of Star X, but this time use the class 

average period as your period P. Are the folded light curves the same? Which period 
estimate do you think is more accurate? 

 
5. If you have observed delta Cep, use your own observational data and estimate the 

period for delta Cep to construct a standard folded light curve. Was your period 
accurate? 
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Core Activity 12.6:  VSTAR 
 

 
Let’s say that you suspect that your data are fluctuating with some particular period. You 
could test this period by using it to construct a phase diagram. If the scatter in the 
resulting phase diagram is much less than the scatter in the data, then you have evidence 
that your data are fluctuating with that particular period. 
 
You could even use this strategy to find an unknown period: simply test a very large 
number of periods by constructing phase diagrams. For a Mira-type variable, you might 
test periods from as short as 100 days to as long as 1000 days, in 0.1-day steps. So you 
would construct one phase diagram to test the period 100 days, another phase diagram to 
test the period 100.1 days, another for 100.2 days, etc., all the way up to 1000 days. 
That’s a lot of phase diagrams! 
 
It takes too long to do this by hand, but this kind of work is ideally suited to a computer. 
This particular period search method is one of the most common in astronomy. It is called 
the analysis of variance, also known as AOV. The VSTAR program will search for 
periods in your data, using AOV. If you find a likely period, it will construct a phase 
diagram for you. 
 
Run the VSTAR program, and again select the star V Cas. Load the data from JD 
2447000 to 2449000. Now hit the <F4> key (AOV (period)). It will ask you for the 
“number of bins” and suggest the answer 20; this is a good choice in this case, so just hit 
<ENTER>. You will see the “period analysis” menu. 
 
Select option <F2> (frequency range). When it asks you for the “low frequency to test,” 
enter 0.001, when it asks for the “high frequency to test,” enter 0.01, and when it asks for 
the “frequency resolution,” enter a 0 (which tells VSTAR to pick the resolution itself). 
Finally, when it asks “AOK?,” answer “Y” and watch what happens. 
 
VSTAR will test a lot of periods (frequencies), and for each period it tests it computes a 
power level. The power level is a measure of the likelihood that the data are periodic for a 
particular period. Power levels higher than 10 mean that the data might be periodic (or 
might not). As it computes, VSTAR draws a graph for you, showing power as a function 
of frequency. This is the most basic graph in period analysis: it is called a periodogram. 
 
Possible periods show up as large power values, and on the periodogram plot they look 
like spikes. So when you see a spike in the periodogram, it represents a possible period. 
VSTAR saves the period of the ten tallest spikes in its “top-ten” list so you can access 
them later. After the periodogram plot is finished, hit the <F4> key. Now VSTAR shows 
you the top-ten list, giving the period and power level. Can you tell by looking which list 
entry goes with which spike on the graph? 
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When you hit <F4>, VSTAR also asks which entries you want to delete. Enter “4-10,” so 
VSTAR will delete entries 4 through 10, leaving only 1, 2, and 3. These are certainly the 
most likely possible periods. Then give no answer to the “delete” question, and VSTAR 
will return you to the period analysis menu. Now hit the <F5> key (model the data). 
VSTAR asks which frequency to include. Enter “1” (to use the #1 period), and VSTAR 
will construct and display a phase diagram, using that period. VSTAR will ask if you 
want to “save to a file” (say “N” for no). 
 
CAUTIONARY NOTE: When VSTAR shows you a phase diagram, it does not show 
two complete cycles, only one. Also, it does not put the maximum at phase zero; it 
chooses an epoch at random. So be prepared: if you see two complete cycles, it is not 
because it is a standard folded light curve! It is because your period is too long—you 
have gotten two cycles per period. Hit <F5> again, and this time choose period #2. 
You will see two complete cycles, because this is the wrong period! Period #2 is the 
twice the true period. Model the data again, using period #3, and you will see three 
complete cycles, because this is also the wrong period; it is three times too long. 
 
When you fold the data using the correct period, you get a nice folded light curve of one 
cycle. When you fold the data using twice (or three times, four times, or any multiple of) 
the correct period, you also get a nice folded light curve, but of more than one cycle. So 
when VSTAR shows many possible periods, it is up to you to look at them, and decide 
which one is real. 
 
If the true period is P, then its multiples are 2P, 3P, 4P, etc. Even though they give a high 
power level, they are not the true period, they are aliases. Since the frequency is f=1/P, 
the alias frequencies are 1/(2P), 1/(3P), 1/(4P), etc. So when the data are periodic with 
frequency f, you will get a spike at frequency f, and at frequencies f/2, f/3, f/4, etc. These 
alias frequencies are called subharmonics; it is a property of AOV that it gives high 
power levels not only for the true period (frequency), but also for its subharmonics. It is 
up to the analyst (you!) to decide which is real and which is an alias. 
 
When you have decided which period is real, use that period to model the data. Now 
when you are asked whether you want to save to a file, say “Y” for yes. Then pick a file 
name for the saved information. VSTAR will create a file containing both phase and 
magnitude (just what is needed to plot the standard folded light curve). It will give you 
two complete cycles, and it will also estimate the maximum, choosing an epoch so that 
maximum is at phase zero: the standard folded light curve. See the VSTAR manual for 
the layout of this file. Plot the standard folded light curve for V Cas from JD 2,447,000 to 
2,449,000. You will need to use a graphing program for this (there are too many data 
points to do it by hand!). 
 



AAVSO Variable Star Astronomy– Chapter 12 

Now repeat the entire procedure, but instead of using the data from JD 2,447,000 
to2,449,000, use the data from JD 2,440,000 to 2,442,000. Now you have two folded light 
curves, covering two different time periods. They show the average shape of the light 
curve during those time intervals. Are they the same? Is the average maximum brightness 
the same? Minimum? Is the shape of the average light curve the same? 
 
Finally, a most interesting question: why does VSTAR show a spike at periods which are 
multiples of the true period (in other words, why does AOV respond to subharmonics)? 
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SPACE TALK  
 

Mira stars are long-period, 
pulsating red giants of 
approximately the Sun’s 
mass that have entered the 
final evolutionary stages of 
their existence and will 
eventually become white 
dwarfs. Miras have nearly 
exhausted the supply of 
hydrogen in their cores. 
Their cores are very dense 
and are composed mostly of 
oxygen and carbon 
(products of helium fusion). 
Just outside the core, a shell 
of hydrogen is still being 

converted to helium, and this layer of helium builds up on the surface of the core. Every 
few thousand years enough helium builds up and then ignites, creating even more carbon 
and oxygen. When the helium-burning begins, the shell rapidly expands and the 
hydrogen-burning turns off. This is known as helium flash. When most of the helium is 
consumed, the flash ends, the shell shrinks, and hydrogen-burning resumes. This process 
can happen over and over again for 50,000 to 100,000 years before the outer layers are 
thrown off to form a planetary nebula. The core remains as a white dwarf, its nuclear fires 
finally out. 
 
1996 marked the 400th anniversary of the discovery of the first Mira-type variable star. It 
is located in the constellation Cetus the Whale, and is known as Omicron (ο) Ceti, or 
Mira, and was the very first known periodic variable star. David Fabricius, a clergyman 
and amateur astronomer in Friesland, Germany, noticed the “new” star in Cetus on 
August 13, 1596. Fabricius checked every star catalogue, atlas, and globe that existed and 
saw that the star was not listed. He observed Mira again at the beginning of September 
and watched it fade below naked-eye visibility during the middle of October. Fabricius 
assumed that his star was a nova similar to Tycho’s nova discovered in Cassiopeia 
(Supernova of 1572). As a result, Fabricius did not check the star after it dimmed, 
because novae do not brighten more than once. He did not notice the star again until 
1609. Fabricius might have studied his star more systematically with the recent 
development of the telescope, but unfortunately he met an untimely end when he was 
murdered by a member of his own parish in 1617. (He had recently announced from the 
pulpit that he knew which member of his parish had stolen one of his geese!) 
 
Mira was listed in Johann Bayer’s 1603 star atlas Uranometria as an ordinary 4th- 
magnitude star labeled Omicron. Another German astronomer, John Holwarda, also from 
Friesland, discovered in the winter of 1638–39 that Mira had brightened, and realized that 
it would probably repeat the increase in magnitude. Every maximum since 1638 has been 
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observed except for those times when Mira’s apparent position in the sky appeared too 
close to the Sun to be seen, which occurs from April to the end of June each year. In 
1667, Ismael Boulliau announced that Mira’s variations were periodic and that the star 
brightened every 333 days. The period is 331.96 days, as published in the 4th edition 
(1985) of the General Catalogue of Variable Stars (GCVS). Johannes Hevelius, who 
named the star Mira (“the wonderful”), began observing it regularly in 1648, and in 1662 
published a pamphlet about the star entitled “Historiola Mirae Stellae” (“Brief History of 
the Wonderful Star”). In 1926, Sir Arthur Eddington gave the correct explanation for the 
behavior of Mira-like variables—that these stars pulsate the same way Cepheid variables 
do, but with longer periods because of their more distended physical size and lower 
surface gravity. 
 
Mira typically ranges in brightness from magnitude 9.3 to 3.4. In some cycles Mira 
brightens to a brilliant 2nd magnitude, and in other cycles barely reaches 5th magnitude. 
The brightest maximum on record occurred in November of 1779, when William 
Herschel observed Mira to be almost as bright as Aldebaran (magnitude 0.9). Maxima 
observed since 1906 by members of the AAVSO have ranged from 2.4 to 4.9, and 
minima have ranged from 8.4 to 9.7. The period also displays irregularities, with maxima 
arriving three weeks earlier or later than predicted. Unlike most Mira-type variables, 
omicron Ceti is a double star system. It has a 10th-magnitude companion, a hot dwarf 
called VZ Ceti. This companion was seen for the first time in 1923, although it had been 
detected by spectroscopic methods 5 years earlier. The irregularities in Mira’s variations 
are obvious in the AAVSO light curve shown below, based on more than 17,000 
observations by amateur astronomers over the past 25 years. 
 

 
 
A star pulsates because it is not in hydrostatic equilibrium: the force of gravity acting 
on the outer mass of the star is not quite balanced by the interior radiation pressure 
pushing outwards. If a star expands as a result of increased gas pressure, the material 
density and pressure decrease until the point that hydrostatic equilibrium is reached and 
then overshot, owing to the momentum of the expansion. Then gravity dominates, and 
the star begins to contract. The momentum of the infalling material carries the contraction 
beyond the equilibrium point. The pressure is again too high, and the cycle starts over 
again. The system acts as an oscillator. However, with loose atmospheric layers of gases, 
the oscillations get out of sync, or phase, with one another and set the stage for chaotic 
motions. Energy is dissipated during such pulsation (analogous to losses caused by 
friction forces), and eventually this loss of energy should result in a damping or lessening 
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of the pulsations. The prevalence and regularity of pulsating stars imply that the 
dissipated energy is replenished in some way. This kind of statistical conclusion requires 
very long runs of data, such as those collected by the AAVSO. 
 
Mira stars are not entirely predictable, and individual cycle lengths can be several weeks 
shorter or longer than the mean. Miras also undergo small, longer-lasting changes in their 
periods which are revealed by sophisticated statistical techniques. Subtle departures from 
regular behavior are characteristic of these stars. However, a handful of Miras go way 
beyond subtle changes, instead exhibiting extreme period changes that indicate radical 
physical changes within the interior of the star. One such star is R Hydrae, the third Mira-
type variable discovered, located ~325 light-years away. (The second Mira-type variable 
discovered was chi Cygni in 1686.) R Hydrae missed discovery twice, once by Johannes 
Hevelius who recorded it in his star catalog simply as a 6th-magnitude star, and once by 
Geminiano Montanari, the Italian astronomer who worked at Bologna and discovered the 
variability of Algol in 1669. Montanari noticed R Hydrae at naked-eye brightness in 
April 1670, noted that it was not listed in Bayer’s Uranometria star catalog, and added it 
to his copy by hand. Montanari’s copy of Uranometria ended up in the possession of 
Giacomo Maraldi, who worked with his uncle, Giovanni Cassini, at the Paris 
Observatory. (Cassini discovered the division in the rings of Saturn which now bears his 
name.) Maraldi saw the handwritten notation in the star catalogue and began searching 
for the star in 1702, finally discovering it two years later at 4th magnitude. 
 
The most remarkable aspect of R Hydrae is its slow but dramatic shortening of period, 
from 495 days during early observations to only 389 days during the last 60 years. For 
the first century of observation, R Hydrae’s period decreased at a nearly constant rate, 
from 485 days/cycle around the year 1800 to 400 days/cycle around 1910. From 1923 to 
1935, the period slowed to 415 days, then suddenly increased again. Since 1937, the 
period has remained constant at 389 days. The century of steady decrease in R Hydrae’s 
period is consistent with theoretical calculations of what happens to a pulsating red giant 
after helium flash. R Hydrae is still recovering from such an event. 
 
Amateur variable star observers usually do not get to actually observe the dramatic 
changes that evolving red giants undergo. One exception is that of T Ursae Minoris, a red 
variable in the bowl of the Little Dipper. After decades of constant periodicity, the 
pulsations of T Ursae Minoris started to increase drastically, probably due to the earliest 
stages of helium flash. Before 1980, the period ranged from 310 to 315 days, but since 
1980, it has decreased steadily to 274 days. If the theoretical models of stellar evolution 
are correct, T Ursae Minoris should continue shortening its period until it reaches a 
minimum period of 200 days (around the year 2030), after which its period will once 
again lengthen. 
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POSTER TALK: "Theoretical Glue": Understanding the Observed 
Properties of Miras with the Help of Theoretical Models 
 
by Dr. Lee Anne Willson 
 
Lee Anne Willson, Professor of Astronomy at Iowa State University, is an internationally-recognized 
expert on Mira variable stars. The following is an adaptation of a paper she presented at a special scientific 
conference on Mira stars sponsored by the AAVSO in 1996. The full text, including additional references 
and bibliography, can be found in The Journal of the AAVSO, Volume 25, No. 2, pages 99–114. 
 
1. Introduction 
 
Each observational study of Mira variables has as its goal to 
determine some quantities describing these stars. However, 
observations alone do not give us an understanding of what 
we are seeing. Theoretical models are needed both to 
connect what is observed to the qualities of the star, and to 
link the various measurements into one coherent picture of 
its nature. It is in this sense that a good model is a kind of 
"glue" holding the picture together. 
 
Figure 1 illustrates the concept of "theoretical glue" by 
showing how the luminosity L, the radius R, and the 
effective temperature Teff are related by the theoretical (and 
lab-tested) model of a blackbody "perfect radiator." Such a 
perfectly radiating surface emits power per unit surface area 
that increases as the fourth power of T (in Kelvins), so a doubling of the temperature gives a 16-fold 
increase in the total amount of radiation (light, infrared, ultraviolet, X-rays and so on) coming from each 
patch of the surface. If stars were, in fact, ideal blackbodies, then their radiation would be completely 
known and the problem of relating L, R, and the temperature of the surface would be trivial. However, real 
stars are gas spheres; we can only see into the atmosphere on the average down to the apparent surface, the 
photosphere. We define the "effective" temperature Teff as the temperature of a blackbody of the same size 
as the star that radiates the same total power, L. This gives the equation L = 4πr2σTeff

4 with σ = 5.670 x 10–8 
watts per square meter per second per (Kelvin)4. Moreover, the stellar atmosphere is not all at one single 
temperature, and we see to different depths at different wavelengths; as a result, the spectrum we see has 
high and low spots compared with an ideal blackbody spectrum. Typically, the effective temperature is 
close to the gas temperature at the photosphere, but is not identical to it. We have to use a theoretical model 
atmosphere to relate effective temperature to the spectrum we see and to the temperature at the 
photosphere. 
 
For Miras and other pulsating variables, even more than for most stars, the process of translating "what is 
actually observed" into "what the star is really like" can lead the incautious investigator astray. For 
example: To get the luminosity—the total power output, energy per second—we observe the visible part of 
the spectrum and, if we are lucky, also the near-infrared and perhaps the ultraviolet, in detail or using 
broad-band photometry. We then use a model of some sort to estimate how much light we are missing in 
the parts of the spectrum that we can't see, and finally we correct for distance. How good our final result is 
will depend on how good the model is that we use to fill in the "missing bits," as well as on how much of 
the spectrum we could actually observe and how accurately we know the distance. The expected (and 
sometimes observed) spectra of Miras are very far from the simplest case—a blackbody spectrum—so 
detailed models are essential. Worse, the molecules that produce some of the deepest spectral features in 
Miras are also found in Earth's atmosphere, and so we are selectively less likely to observe the depressed 
parts of the spectrum. 
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2. Classical model atmospheres 
 
The calculation of a classical stellar atmosphere begins with a choice of stellar parameters—for example, 
composition, effective temperature, and surface gravity. The propagation of energy from the interior of the 
star through the atmosphere and into space is then calculated, taking into account the effects of the different 
atoms, ions, and perhaps molecules that can absorb and emit light. The result of a classical atmosphere 
calculation may include any or all of a predicted spectrum, a model for the pattern of brightness that you 
would see if you could get close to the star, and predicted values for the photometric colors. Such models 
play a key role in the determination of the luminosities of stars, and also in the derivation of their radii. 
 
To get an estimate for the radius or diameter of a star, we may use an interferometer or a lunar occultation 
to get a pattern of fringes that may be interpreted by using a model for the brightness pattern on the star. Or, 
we may try to relate the appearance of the spectrum to the effective temperature Teff using a detailed model 
atmosphere, and then deduce R from L and Teff. If these methods give the same answer, it increases our 
faith that the model is close to describing what happens on the star. 
 
To find the composition of the atmosphere, the line spectrum is analyzed using a stellar model atmosphere. 
Thirty years ago, most such calculations were made using some reference model atmospheres and looking 
for differences using methods such as the "curve of growth." Today, it is possible to carry out most 
analyses by making model atmospheres with a range of compositions and selecting the composition pattern 
that produces a spectrum that best matches the observations.  
 

Figure 2 illustrates how a classical stellar model 
atmosphere glues together observable and non-
observable quantities for stars. In a classical model 
atmosphere there is no net outflow of matter—no 
stellar wind—and there are no systematic motions, 
such as one might get from pulsation. Obviously, 
this is not going to work perfectly for modeling 
Miras! Also, in classical atmospheres, each part of 
the atmosphere is in radiative equilibrium—
meaning that the radiant energy flowing into a 
sample volume of the gas per second exactly 
equals the radiant energy flowing out of the same 
sample volume per second. In more modern model 
atmospheres, other forms of energy are also 
considered, and energy is allowed to shift from one 
form to another—for example, from May be 
deduced from the spectrum, using proper sound 
waves to radiation. There are still relatively few 
models, however, that include dynamical effects 
and outflows. 

 
One of the important ingredients in a stellar atmosphere model—whether classical or modern—is the 
surface gravity g = GM/R2, where G is the gravitational constant, and M is the mass of a pulsating star. 
This combination of M and R turns out to be important for the spectrum because higher gravity compresses 
the atmosphere more. One can deduce a gravity by computing synthetic spectra for models with a range of 
surface gravities, and then picking the model whose spectrum best matches the star, as long as the model 
does produce a good match. This works reasonably well for most non-variable stars, but does not do a good 
job with the variable ones. Other methods are needed for these, at least for now. 
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3. Glue from pulsation and evolution studies 
 
In principle it should be easier to derive a value for the surface gravity for a pulsating star, because the 
material in the atmosphere is moving in response to gravity during much of the cycle. Thus, one might 
observe the change in velocity over some interval of time and estimate Δv/Δt = g. Because the excursion in 
radius is large (so g is not the same at all parts of the path) and because pressure forces are also important, 
the above method typically underestimates g by a factor of five or so. Instead, a dynamical atmosphere 
model needs to be used to interpret the result. Also, you need a good radiative transfer model to be able to 
interpret the observed Doppler shift in terms of the motions of parts of the atmosphere, because only part of 
what you see is moving towards or away from you. To get a meaningful Δv from the Doppler shift requires 
a fairly detailed model for the atmosphere, and this correction is still rather rough for most variable stars.  
 
There is another way to get a combination of M 
and R for pulsating stars. A given star is usually 
able to pulsate only in one or a small number of 
modes, each with a distinct period associated with 
it. Detailed models for the interior of a pulsating 
star can be analyzed to reveal the period(s) that are 
possible, and these can be related through formulae 
such as (for example), P = aRbMc, as is illustrated 
in Figure 3. (Usually b is between 1.5 and 2, and c 
is between –0.5 and –1.) 
 
There are assumptions that go into this kind of 
modeling that need to be tested more thoroughly 
than has been possible so far: for example, the 
period of pulsation of a star pulsating at full 
amplitude may not be the same as the period 
derived looking at very small pulsations in a model 
for a static star. 
 
A PMR relation is often used to estimate the mass 
of a pulsating star, M, given its radius, R (which 
may have been derived from L and Teff or from 
angular diameter measurements), assuming that 
one knows the mode of pulsation. It can otherwise be used to determine the pulsation mode(s), if one is 
confident of M and R from other measures. For most classes of stars this is relatively easy to do, and the 
results are consistent with whatever else one knows about the stars. However, for Miras the radii and 
masses are still sufficiently uncertain that this method does not even yield an incontrovertible result about 
the pulsation mode, much less useful estimates for their masses. 
 
 
4. Models for stellar evolution 
 
The most important "theoretical glue" in stellar astronomy is the study of how stars evolve. Starting with 
some composition (assumed to apply throughout the star) and a mass, M, a model is found that obeys 
relevant physical equations and is in hydrostatic equilibrium. For all but the lowest-mass stars the model 
will include energy generation by nuclear reactions in the core. These reactions modify the composition at 
the center, so some time later the star's structure will be a little different and its L and R may also be a little 
different. By building a sequence of static models that are related by the condition that the change of 
composition comes from the nuclear reactions, one can model the evolution of the star. 
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In most evolutionary calculations the mass M is not 
allowed to change with time, although there are 
times in the life of a star when the mass decreases 
as the result of mass loss from the surface. The 
change in mass that comes from the conversion of 
mass to energy in the nuclear reactions is almost 
always small enough to ignore. One time when the 
mass loss is particularly important is the Mira 
stage, and this fact is a major reason why Mira 
models are not yet in a settled state. 
 
Since much of stellar evolution proceeds at 
constant mass, and since L and Teff are the easiest 
quantities to estimate directly from observations, 
we traditionally plot tracks for constant mass stars 
in a diagram of L versus Teff, one variant of the 
Hertzsprung-Russell diagram. One may then think 
of evolutionary tracks as linking L, M, Teff or R, 
initial composition, and age for the star (Figure 4).  
 
In addition to the problem of how to include mass 
loss in a realistic way, evolutionary models also 
suffer from our lack of detailed understanding of 
convection in stars; of rotation inside stars; of the 
effects of magnetic fields in stars; and so on. Most 
astronomers assume that these effects will turn out 

to be small, but others would not be surprised to learn that some of them affect the "big picture." 
 
 
5. Dynamical models for the atmospheres of pulsating stars 
 
If we know how a star is pulsating, then we can model the response of the outer parts of the star (the 
atmosphere) to this pulsation. Figure 5 shows the connections that can be made this way. In practice, L, M, 
and Teff or R are assumed; also a pulsation period P is assigned (using a PMR relation) and the bottom of 
the atmosphere is made to move in and out with period P.  
 
Dynamical models require some understanding of the interaction between the gas and the radiation. The 
pulsation generates waves that compress the gas, heating it. It then cools by radiating away energy, and also 
by expanding. Depending on the density of the gas, the conversion of internal energy into radiation may be 
fast (compared with the pulsation time) or slow. Where it is fast, the material cools to roughly the 
equilibrium temperature that it would have in a static model, and then as it expands it may be refrigerated 
below the temperature it would have in the static case.* Where the density is lower, the cooling is less 
efficient; there, the temperature may never fall as low as the equilibrium temperature. Some dynamical 
model results are very sensitive to the treatment of these processes; mass loss is one example. Since the 
details of how the gas emits or absorbs radiation at low density involve many non-equilibrium chemical 
processes, this is definitely one of the frontier areas in dynamical atmosphere modeling. 
 
 
 
*Since the density is highest just after the gas is compressed, there is a region in the atmosphere where it can lose 
energy to radiation immediately after compression but has a harder time regaining energy near the end of its expansion. 
We can describe this approximately by saying that the shock is nearly isothermal-it returns to the radiative equilibrium 
temperature quickly-but the expansion between shocks becomes nearly adiabatic-without gain or loss of energy. 
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A detailed treatment of the interaction between gas 
and radiation—the radiative transfer problem—is 
also required in order to synthesize the spectrum 
and colors that would be observed, as well as the 
light curve. So far, there is no model for Miras or 
other pulsating stars that includes enough detail to 
do this effectively. However, dynamical models 
that are now available provide important insight 
into the motions of the atmospheres and the mass 
loss rates that result. For example, Bowen's models 
(Bowen 1988, 1990) have atmospheric motions and 
conditions that match what we deduce from 
observations—shocks with velocity amplitudes of 
20 to 30 km/s, warm regions in some, dust 
formation in others, and so on. In fact, the success 
of dynamical models in matching velocity 
variations observed in the infrared CO lines is the 
best evidence we have about the mode of pulsation 
of these stars—fundamental mode models match 
well, but overtone models (with larger radius at a 
given P) are quite far from matching, as was first 
noted nearly 20 years ago (Hill and Willson 1979). 
 
 
6. Some results of recent "glue" production 
 

Bowen's latest grid of dynamical atmosphere 
models is a collection of models that are 
constrained by stellar evolution calculations: once 
L, M, and initial composition are chosen the 
evolutionary calculations are used to derive R, 
and then a theoretical PMR relation gives P. This 
single step of requiring the stars to fall on a single 
set of evolutionary tracks turns out to make quite 
a big difference in the way that the mass loss is 
understood to develop. The choice of which 
tracks to use is not so important as is the fact that 
using tracks forces certain relationships between 
models: For a given mass, as a star increases in 
luminosity it also increases in radius with 
(slightly) decreasing Teff. Two stars with the same 
L and different masses will be separated in Teff or 
R. Two stars of the same L and M but different 
composition will also be separated in Teff or R: 
lower metallicity stars are hotter and smaller at a 
given L. 
 
Bowen's models, constrained in this way, predict 
mass loss rates that are very sensitive to stellar L, 
R, and M. Since all of these parameters vary in a 
predictable way along a given evolutionary track, 
we can display the results as mass loss rate M 
versus  L  for  a  given  mass,   where  for a given 
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metallicity L and M together also determine R, Teff, and P as well. Figure 6 shows the result of these 
calculations for stars whose composition matches that of the Sun. 
 
 
7. Conclusion: where we need some new glue 
 
Many pieces of the puzzle of Miras and other pulsating variable stars are well-glued together by these 
theoretical calculations, but some very basic properties remain "unglued." The outstanding problem in the 
case of the Miras remains the determination of their absolute sizes; here, uncertainties of factors of two or 
more are still a problem. Clearly we need more and better "glue"—new models that incorporate more of the 
physics that we already know is important in producing what is observed. 
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