Poster # 18.02 (Revised title)

Short-Term Changes in the Eclipse Timings and Light-Curve Shapes of W UMa Binaries

Russell Genet (Orion Observatory)
and
Thomas Smith (Dark Ridge Observatory)
with
Dirk Terrell (Southwest Research Institute)
Overall Purpose of the Program

The overall purpose of our program is to look for subtle short-term changes in the eclipse timings and light-curve shapes of short-period W Ursa Majoris binaries

Eclipse timing changes could be due to
* Angular momentum loss
* The Applegate effect
* Third body light-time effect
* Micro-episodes of mass flow

Light curve shape changes could be due to
* Starspots or other photometric surface phenomena
* Flares (only in U—and not until a future observing season)

Of course any changes in either eclipse timings or light curve shapes could also be due to observational errors
Research Approach

Concentrate on a few short-period binaries
* Select binaries at or near the 0.22 day “limit”
* Favor binaries with RV curves and known orbital parameters
* Obtain complete light curves (one orbit or more) nearly every night
* Observe same systems all season long for several seasons

Observational strategy
* Observe binaries simultaneously from two observatories
* Minimize photometric errors via ensemble photometry
* Transform all data to standard magnitude system
* Start with a trial pilot season of observations and analysis
* Follow with three full “industrial-strength” seasons

Complimentary analytic approaches
* Statistical—seasonal parameters and trends
* Nonparametric modeling—curve shape changes
* Parametric modeling—Wilson Devinney (with Dirk Terrell)
Pilot Season Observations

<table>
<thead>
<tr>
<th>Binary</th>
<th>DRO</th>
<th>Orion</th>
<th>Total</th>
<th>Period</th>
<th>V_J Max</th>
<th>Delta Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>V523 Cas</td>
<td>27</td>
<td>7</td>
<td>34</td>
<td>0.234</td>
<td>10.6</td>
<td>0.83</td>
</tr>
<tr>
<td>RW Com</td>
<td>18</td>
<td>8</td>
<td>26</td>
<td>0.237</td>
<td>11.0</td>
<td>0.70</td>
</tr>
<tr>
<td>V400 Lyr</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>0.253</td>
<td>12.7</td>
<td>0.65</td>
</tr>
<tr>
<td>TZ Boo</td>
<td>18</td>
<td>13</td>
<td>31</td>
<td>0.297</td>
<td>10.4</td>
<td>0.59</td>
</tr>
<tr>
<td>V1191 Cyg</td>
<td>22</td>
<td>39</td>
<td>61</td>
<td>0.313</td>
<td>10.8</td>
<td>0.33</td>
</tr>
<tr>
<td>GM Dra</td>
<td>14</td>
<td>3</td>
<td>17</td>
<td>0.339</td>
<td>8.8</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Sample Light Curves

V523 Cas
RW Com
V400 Lyr

TZ Boo
V1191 Cyg
GM Dra
Statistical Analysis

Times of minima (and other parameters)
* Kwee van Woerden, Fourier, and Hertzsprung
* Actual (external) errors (precision) based on simultaneous observations
* Other parameters—secondary minima, maxima, delta magnitudes, etc.

Seasonal ephemeris and O-C analysis
* Period (and epoch) derived solely from our seasonal observations
* Error of mean for seasonally-derived period less than one second
* Seasonal ephemeris used in seasonal O-C analysis

Photometric Precision
* Precision of classical variable minus single comparison photometry
* Precision of ensemble photometry (multiple comparisons)
* Relationship between times of minima and photometric precision

Analysis of variance (ANOV)
* Partition of variances between observatories, orbital cycles, nights, etc.

Nonparametric Light Curve Modeling

Nonparametric light curve models
* Make no physical assumptions / compliment parametric models
* Tsesevich\(^2\) introduced concept of standard light curve for sparse data
* We extended Tsesevich concept to a season of dense-data light curves

Model formulations
* Models are magnitude as a function of phase (they can be piecewise)
* Points transformed to a function via smoothing spline or Fourier low pass
* Models formulated for every individual night (each observatory)
* Seasonal master model formulated from best nights (each observatory)

Quantitative differential analysis between models
* Compare single night models with seasonal standard model, or compare models from individual nights two at a time
* Use comparisons to evaluate quantitative changes in light curves with respect to magnitudes, colors, and asymmetries
* Converted phase shifts for best fits to whole-curve times of minima

Parametric Light Curve Modeling

Parametric light curve models
* Models provide physical representation / necessarily make assumptions
* Parametric models yield astrophysical interpretation at the cost of some fit to data if the underlying model is inadequate
* Wilson-Devinney model analysis (Dirk Terrell)

Model formulations
* Initial modeling develops a single set of orbital parameters for the season
* Using these, develop a model for each night with variations in time of minima, and in starspot numbers, lat/longs, diameters, and temperatures

Quantitative differential analysis between models
* Compare models from individual nights—two at a time
* Use comparisons to evaluate quantitative changes in light curves with respect to magnitudes, colors, and asymmetries
* Also use models to interpret variations as changes in starspots
* Converted phase shifts for best fits to whole-curve times of minima
Parametric / Nonparametric Model Comparison

Roles of each model type
* Nonparametric models are the empirical standards / reality checks
* Parametric models provide astrophysical interpretation

Comparing the two tells us
* How well the parametric models fit the empirical data
* What variation remains unexplained

This will suggest
* How complete our parametric models are in explaining reality
* And therefore whether they are in need of further explanatory parameters
Program Future Plans

Complete pilot season analysis
* Ensemble photometry reduction procedure
* Statistical analysis
* Nonparametric model analysis
* Parametric model analysis (Terrell)

Report pilot season results to the community
* IAU Commission 42 conference in Syros, Greece, 27-30 June, 2005
* Close Binaries in the 21st Century: New Opportunities and Challenges

Further out
* Select binaries for second season / some the same, some new
* Observe in V & I (sequentially) instead of R only
* Eventually add two new larger telescopes (one for each observatory)
* Equip these new systems with simultaneous UVI photometers
 (using dichroic beamsplitters and three CCD cameras)