Solar Bulletin

THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS - SOLAR DIVISION

Carl E. Feehrer, Editor 9 Gleason Rd. Bedford, MA 01730

Email: cfeehrer@hotmail.com

ISSN 0271-8480

Volume 58 Number 9

September 2002

Table I. Mean Sunspot Numbers (Ra) for September 2002 [boldface = maximum, minimum]

	Y					
Day	N	Raw	s.d.	Ra	s.d.	s.e.
1	41	188	7.8	139	4.2	0.66
2	37	201	7.9	153	4.2	0.69
3	46	217	9.4	165	4.8	0.71
4	46	216	9.2	162	4.8	0.71
5	40	220	10.8	158	5.1	0.81
6	45	177	8.2	136	3.9	0.58
7	43	179	9.7	135	4.5	0.69
8	45	184	8.4	136	4.1	0.61
9	39	179	9.0	134	4.0	0.64
10	46	176	8,0	132	4.2	0.62
11	40	178	9.2	135	4.2	0.66
12	42	179	8.9	133	4.7	0.73
13	40	156	9.0	118	4.9	0.77
14	35	142	6.3	111	3.6	0.61
15	33	157	10.7	115	6.6	1.15
16	27	153	8.7	118	4.4	0.85
17	36	175	7.2	134	4.3	0.72
18	35	194	9.3	141	4.0	0.68
19	34	191	8.4	140	4.5	0.77
20	33	173	8.5	128	4.6	0.80
21	27	157	8.0	114	3.7	0.71
22	28	171	9.6	134	4.7	0.89
23	33	175	8.0	133	4.2	0.73
24	41	162	7.9	122	3.9	0.61
25	29	162	7.6	117	4.6	0.85
26	30	128	6.3	102	4.6	0.84
27	28	140	7.5	106	4.1	0.77
28	28	108	6.2	87	3.3	0.62
29	37	99	5.0	77	2.8	0.46
30	33	91	6.8	70	3.1	0.54
31		I				***
		~~~	<del></del>	<del></del>		

126.2

Means: 36.6 167.6

Total No. of Observers: 70

Total No. of Observations: 1097

**Table II. September Observers** 

14	AAP	P.Abbott
7	ANDE	E.Anderson
17	ARAG	G.Araujo
8	ATON	A.Attanasio
12	BARH	H.Barnes
6	BATR	R.Battaiola
14	BEB	R.Berg
5	BEDJ	J.Bedient
16		J.Berdejo
	BMF	M.Boschat
	BOJP	P.Bojda
8	BOSB	B.Bose
24	BRAB	B.Branchett
	BRAD	D.Branchett
29	BROB	R.Brown
4	CAMP	
18		J.Carlson
29		G.Morales
25	CKB	B.Cudnik
16		C.Laurent
20	COMT	•
30	CORA	A.Coroas
26	CR	T.Cragg
12	DELS	S.Delaney
5	DEMF	F.Dempsey
20		G.Dyck
20	DRAJ	J.Dragesco
26	DUBF	F.Dubois
27	ELR	E.Reed
3	ERRA	A.Errico
18		C.Feehrer
13		K.Fujimori
23		
11		
13	HALB	B.Halls

ERRA	A.Errico
FEEC	C.Feehrer
FUJK	K.Fujimori
GIOR	R.Giovanon
GOTS	S.Gottscha
HALB	B.Halls
HAYK	K.Hay
HRUT	T.Hrutkay
JAMD	D.James
JEFT	T.Jeffrey
<b>JENS</b>	S.Jenner

		,
24	KAPJ	J.Kaplan
23	KHAR	R.Khan
13		J&S Knight
1	KUZM	M.Kuzmin
11	LARJ	J.Larriba
16	LERM	
24	LEVM	M.Leventhal
14		
24	MALK	
7	MARE	E.Mariani
28	MARJ	J.Maranon
16	MCE	E.Mochizuki
11	MMI	M.Moeller
2		G.Mudry
12	RICE	E.Richardson
19	RITA	A.Ritchie
21	SCGL	G.Schott
9	SCHG	G.Scholl
13	SIMC	C.Simpson
18	STEM	
20	STQ	N.Stoikidis
18	SUZM	M.Suzuki
18	SZAK	K.Szatkowski
22	SZUM	M.Szulc
20	TESD	D.Teske
22	THR	R.Thompson
10		J.Temprano
27		
19		
10	WITL	L.Witkowski

### **Reporting Addresses**

Sunspot Reports -- email: solar@aavso.org

postal mail: AAVSO, 25 Birch St. Cambridge, MA 02138 FAX (AAVSO): (617) 354-0665

SES Reports -- email: noatak@aol.com postal mail: Mike Hill

114 Prospect St. Marlboro, MA 01752

Magnetometer Reports -- email: capaavso@aol.com postal mail: Casper Hossfield

PO Box 23, New Milford, NY 10959

FAX: (973) 853-2588 or (407) 482-3963

Table III. Means of Raw Group Counts (RG) and Ratios of Spots to Groups (S:G) in September 2002

Day	RG	S:G	Day	RG	S:G	Day	RG	S:G	Day	RG	S:G
1	10.1	8.6	9	9.3	9.3	17	10.1	7.3	25	9.7	6.7
2	11.3	7.8	10	8.2	11.5	18	11.3	7.2	26	8.1	5.8
3	11.6	8.7	11	7.3	14.4	19	12.1	5.8	27	8.6	6.3
4	11.3	9.1	12	6.9	15.9	20	10.4	6.6	28	6.5	6.6
5	10.3	11.4	13	6.4	14.4	21	9.0	7.4	29	5.9	6.8
6	8.5	10.8	14	6.2	12.9	22	10.0	7.1	30	4.5	10.2
7	9.6	8.7	15	7.8	10.1	23	10.5	6.7	31		
8	10.4	7.7	16	9.0	7.0	24	9.8	6.5	Mn.	9.02	8.84

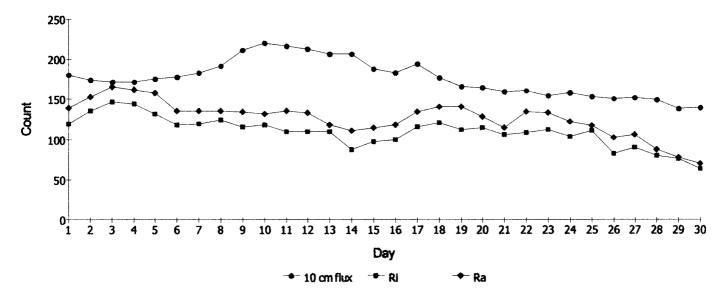



Fig. 1. 10 cm Solar Flux and Comparison of Ri (provisional) with Ra Estimates for September 2002; r=0.960).

Ri source: http://www.sidc.oma.be/index.php3

10 cm source: http://www.drao.nrc.ca/icarus

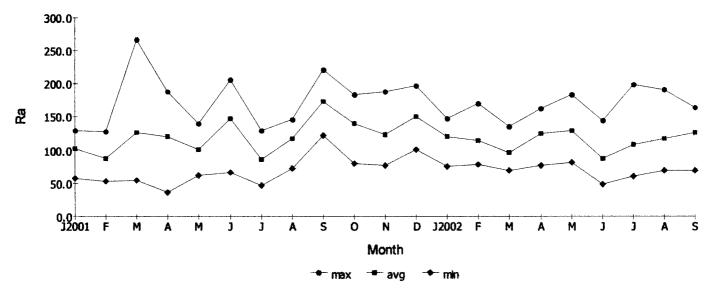
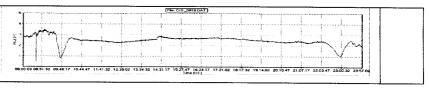
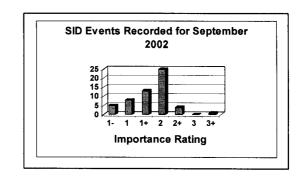




Fig. 2. Maximum, Mean, and Minimum Values of Ra for Each Month from January 2001 to Present.

### Sudden Ionospheric Disturbance Report

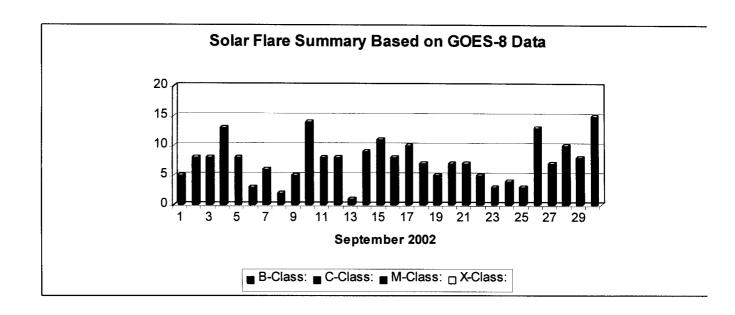
Michael Hill, SID Analyst 114 Prospect St Marlborough, MA 01752 USA noatak@aol.com




### Sudden Ionospheric Disturbances (SID) Recorded During September 2002

Date	Max	Imp	Date	Max	Imp	Date	Max	Imp
20901	0933	1+	020915	1924	1	020930	0151	2
20901	1231	1+	020917	0921	1	020930	0532	1-
20901	1645	1-	020918	1030	2	020930	0544	2
020901	2024	2	020918	1724	2	020930	0639	1+
020902	0910	1-	020919	0517	3+	020930	0810	1
020903	0745	1-	020919	0814	1+	020930	0919	1+
020904	0630	1	020919	1437	1+			
020905	1241	2	020920	0000	2+			
020906	1629	1+	020920	0510	1+			
020906	1644	1	020920	0926	2	*****		
020907	1744	2	020920	0933	2			
020908	0140	2	020921	1704	1+			
020908	1449	1+	020922	0552	1+			
020910	1033	2	020924	1603	2		1,7 10	
020910	1456	1+	020927	0822	2+		<del></del>	
020910	1722	2	020927	1302	2+			
020911	0736	2	020927	1311	2			
020911	1051	2	020927	1452	2+			
020912	0713	2	020927	1653	2			
020912	1155	1-	020927	1908	2			
020913	0714	2	020927	1945	2	****		
020915	0447	1+	020929	0640	2			
020915	0750	1	020929	0855	2			
020915	1538	1	020929	0903	2			
020915	1737	2	020929	1451	1			

The events listed above meet at least one of the following criteria


- 1) Event reported by two or more observers within ±5 minutes
- 2) Event matched to GOES-8 XRA event to within  $\pm 15$  minutes and event time <  $1000~\rm{UT}$
- 3) reported by observer with a quality rating > 8 (scale 1-10)

Observer	Code	Station(s) monitored
P Campbell	A100	NLK
S Bressan	A101	HWU
F Steyn	A102	NAA NWC
E Smith	A105	DHO
A Clerkin	A29	NAA
D Toldo	A52	HWU NAA NWC
J Ellerbe	A63	ICV
A Panzer	A83	NAA
W Moos	A84	DHO FTA
M Hill	A87	NAA
G DiFillipo	A93	HWU
T Poulos	A95	NAA
R Battaiola	A96	DAO HWU
J Wallace	A97	NAA
M King	A99	HWU

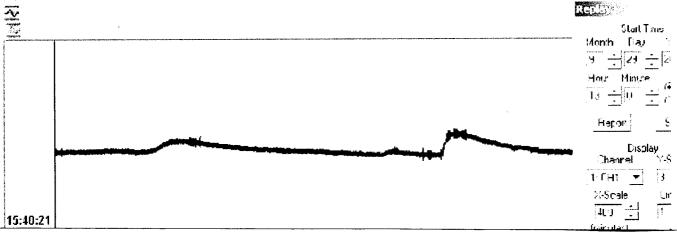


# Solar Events

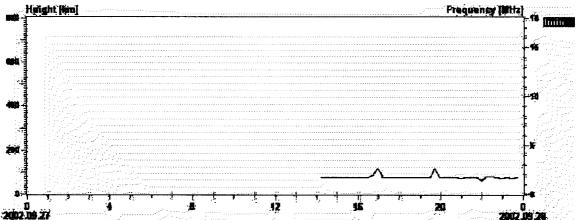
Solar Flare activity slowed down significantly in September. There were 220 X-Ray flare events recored by the GOES-8 spacecraft. Of those only 13 were M-Class events with no X-Class events. This was borne out in our observers data. We recored only 56 correlated events, most of average importance rating. Now that I have the automated analysis program written, I am starting to do the analysis on the six months of backlogged data from January – June of 2000. So those of you who contributed for those months can be happy that your data will soon make it into the AAVSO SID Database. It will be nice to fill in this gap in the data set. Thanks to all of you for your continued contributions to the SID program.



### SUDDEN IONOSPHERIC DISTURBANCES SUPPLEMENT

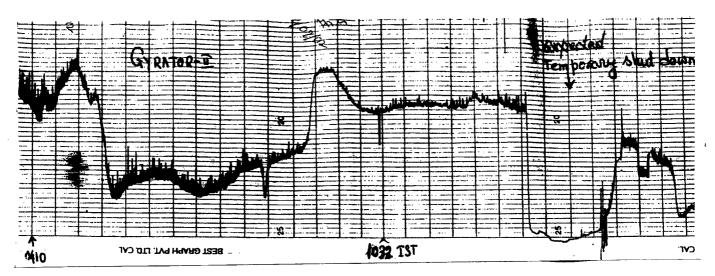

PO Box 23

Casper H. Hossfield, SID Sup. Editor SUDDEN IONOSPHERIC DISTURBANCES **RECORDED DURING SEPTEMBER, 2002** 

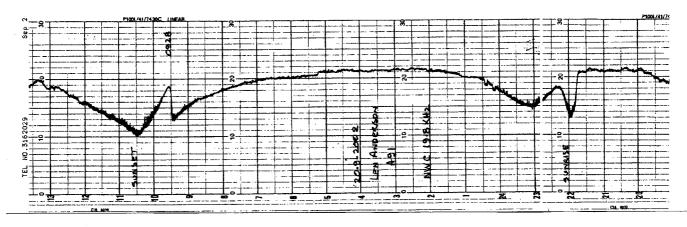

capaavso@aol.com Fax 973 853 9054

New Milford, NY 10959, USA

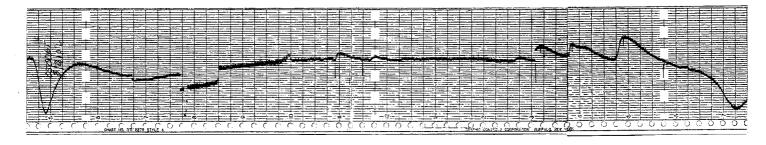
Various very low frequency (VLF) radio receivers can be used to detect solar flares as sudden ionospheric disturbances (SIDs). The chart below shows an SID recorded with a Sierra 127B-CR frequency selective voltmeter, a device used to measure the signal strength of VLF radio signals. Steve Hansen, A59, uses one of these triple conversion superhetrodyne receivers that he bought from Fair Radio Sales, a surplus dealer in Lima Ohio back in the '80s to record SIDs. Steve records by computer using an A/D converter and software that is normally used by amateur seismologist to record his SIDs. Here, in his own words, is Steve's description of how he recorded the SIDs below: Here are the two relevant screen captures. The first (927sid.jpg) is my 24.0 SES trace for NAA on 9/27/02. The shot is of the replay screen of Larry Cochrane's WinSDR, a program normally used with amateur seismographs. It can record up to 8 channels with sample rates of 5 to 200 samples per second. The program has to be used with Larry's A/D board. The time at any point on the record can be read by placing the cursor at the point of interest and the time will appear in a box at the lower right. Full details can be found at Larry's site at http://psn.duake.net/

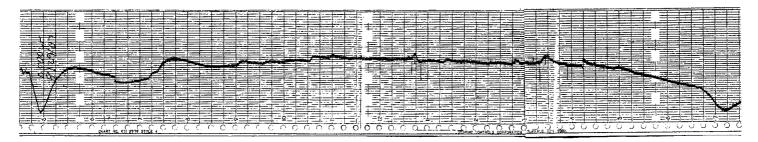



Steve lives near Amherst, massachusetts and not far from NOAA's Millstone Hill Ionosonde station. Steve has found that the ionosonde also detects SIDs Here is how Steve describes it: I get my fmin data from the Millstone Hill ionosonde which is located in Westford, MA just a few miles south of my location. The data can be obtained from the website at <a href="http://dialsonge.havstack.edu/">http://dialsonge.havstack.edu/</a>. For analyzing the daily data I use a program called SAO-Explorer that can be downloaded from the University of Massachusetts at Lowell's Center for Atmospheric Research at http://ulcar.umi.edu/ . (SAO stands for Standard ADEP Output, a format for archiving ionosonde data.) So, the second file (927fmin.jpg) shows the fmin record for the same day. Note the two peaks that correspond to the SES events.

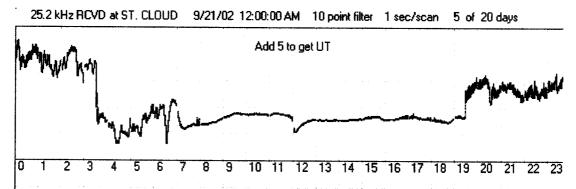



Steve is the publisher of "The Bell Jar" a little periodical for amateur scientists interested in vacuum technology. He has been helping Jim Mandaville, A90, build a cosmic ray detector that Jim will use to record Forbish Decreases that are the signature of the sun's coronal mass ejections. This homemade detector is first partially evacuated and then flushed out and filled with Argon and a small amount of ethyl alcohol as a quencher.

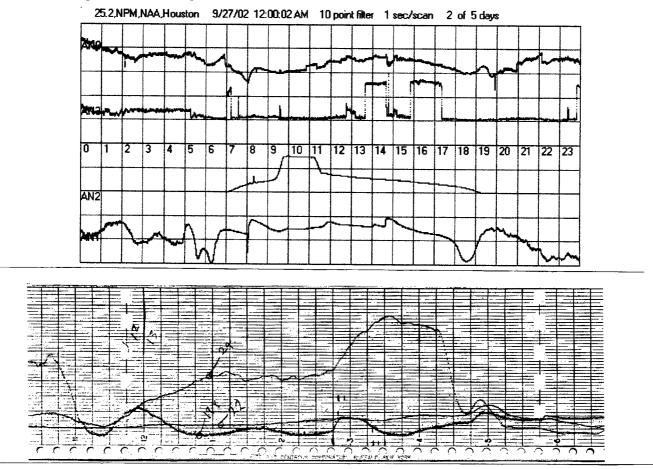

Below is a nice chart showing an SID recorded as an SES of VLF station VTX3 in India transmitting on 18.2 kHz. It was made by Biswajit Bose, A103, who lives in Calcutta, India. Biswajit was the first to build a loop antenna receiver I first described in the March issue of the SID Supplement. He has his 1.5 meter loop antenna mounted on the roof with TV antennas because there is no other place to put it in down town Calcutta where he lives. At first he tuned it to NWC in West Australia but the 19.8 kHz signal is too weak to overcome interference from the TV antennas. Later he tuned it to VTX3 which is about 750 km distant and puts in a much more powerful signal that can overcome the TV interference. Unfortunately VTX3 is not on the air continuously so there are interruptions in the trace but other than that it is a good signal source for detecting solar flares. Biswajit is an AAVSO sunspot observer. He is also interested in radio astronomy and belongs to SARA. He is presently working with professional radio astronomers at Pune, India where there is a big 45meter dish. They are observing the peculiar object SS433, a micro quasar.




The last days of September were days when the sun was quite active producing solar flares. Len Anderson, A91, in South Perth, West Australia recorded a flare on 28 September shown below as an SID starting at 0930 UT, about an hour before his sunset pattern reached its minimum value.




James Ellerbe, A63, in Nerja, Spain recorded flares on 28 and 29 September as SIDs using VLF station, ICV, in Sardinia as his signal source. He uses a Gyrator receiver built by Art Stokes and records on a Rustrak strip chart recorder.






Here is a recording of a flare as an SID made by Al McWilliams, A94, in St Cloud Minnesota. Al records the VLF station in La Mourie, North Dakota, USA transmitting on 25.2 kHz. The SID is inverted as are all of his SIDs of this station.



Here is an SID recorded by Jerry Winkler, A50 in Houston, Texas, USA. Jerry uses the same ADR2000A converter that al McWilliams uses. These A/D converters have the advantage that they record in the background while other things are being done with the computer like answering email.



Here is a multiplexed recording made by Domenic Toldo in Johannesburg, South Africa. The three signals that are multiplexed are NAA in Maine, USA, NWC in Northwest Cape, Austrailia. And a signal on 22 kHz which may be HWU in le Blanc, France transmitting on 21.75 kHz. The NWC signal recorded an SES starting at 0245 UT on 13 August but this chart was received too late to appear in the August SID Supplement. This SES was also recorded by A91 and A102.