## Solar Bulletin



# THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION

Rodney Howe, Editor, Chair c/o AAVSO, 49 Bay State Rd Cambridge, MA 02138

Web: http://www.aavso.org/solar-bulletin Email: solar@aavso.org

ISSN 0271-8480

Volume 74 Number 4

April 2018

The Solar Bulletin of the AAVSO is a summary of each month's solar activity recorded by visual solar observers' counts of group and sunspots and the VLF radio recordings of SID Events in the ionosphere. Section 1 gives contributions by our members. The sudden ionospheric disturbance report is in Section 2. The relative sunspot numbers are in Section 3. Section 4 has endnotes.

## 1 Etsuiku Mochizuki at his telescope.



Figure 1: Etsuiku Mochizuki: (MCE), 29 Okuboryoke, Sakuraku, Saitama-shi, Japan, projection, refractor, 90 MM.

## 1.1 Monthly averages of Sunspot Counts from 1961 thru 2017

Here are data from Etsuiku Mochizuki: (MCE), 29 Okuboryoke, Sakuraku, Saitama-shi, Japan, projection, refractor, 90 MM.

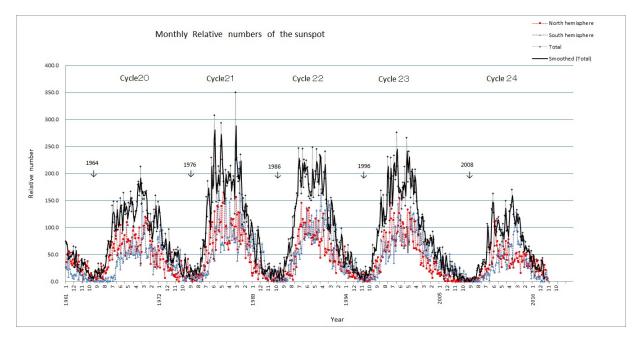



Figure 2: North and South Hemisphere monthly averages of sunspot counts from Etsuiku Mochizuki from years 1961 to 2017.

## 2 Sudden Ionospheric Disturbance (SID) Report

#### 2.1 SID Records

April 2018 (Figure 3) There were 5 GOES events recorded on the 21st of April here in Fort Collins, Colorado. However none of these were strong enough to create a SID event in the ionosphere.

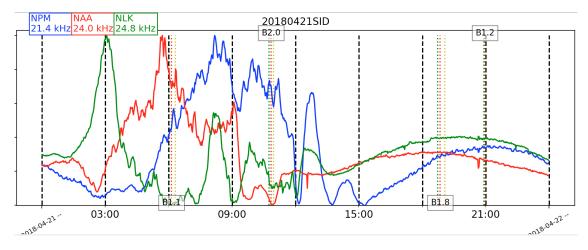



Figure 3: VLF recording using the sidmon.py software from Nathan Towne.

#### 2.2 SID Observers

In April 2018 we have 15 AAVSO SID observers who submitted VLF data as listed in Table 1. Observers monitor from one to three stations to provide SID data.

| Observer     | Code | Stations             |
|--------------|------|----------------------|
| A McWilliams | A94  | NML                  |
| R Battaiola  | A96  | HWU                  |
| J Wallace    | A97  | NAA                  |
| L Loudet     | A118 | GBZ DHO              |
| J Godet      | A119 | GBZ GQD ICV          |
| B Terrill    | A120 | NWC                  |
| F Adamson    | A122 | NWC                  |
| S Oatney     | A125 | NML                  |
| J Karlovsky  | A131 | FTA NSY              |
| R Green      | A134 | NWC                  |
| S Aguirre    | A138 | NPM                  |
| G Silvis     | A141 | NLK HWU              |
| R Rogge      | A143 | $\operatorname{GQD}$ |
| K Menzies    | A146 | NAA                  |
| R Russel     | A147 | NPM                  |

Table 1: 201804 VLF Observers

Figure 4 depicts the importance rating of the solar events. The durations in minutes are -1: LT 19, 1: 19-25, 1+: 26-32, 2: 33-45, 2+: 46-85, 3: 86-125, and 3+: GT 125.

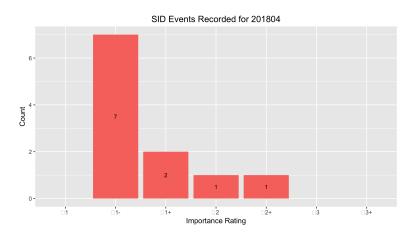



Figure 4: Solar Events Y-axis, Importance Rating X-axis.

## 2.3 Solar Flare Summary from GOES-15 Data

In April 2018, There were 23 solar flares measured by GOES-15: 21 B class flares and 2 A class flares. About the same flaring this month compared to last month. There were 18 days this month with no GOES-15 reports of flares. (see Figure 5).

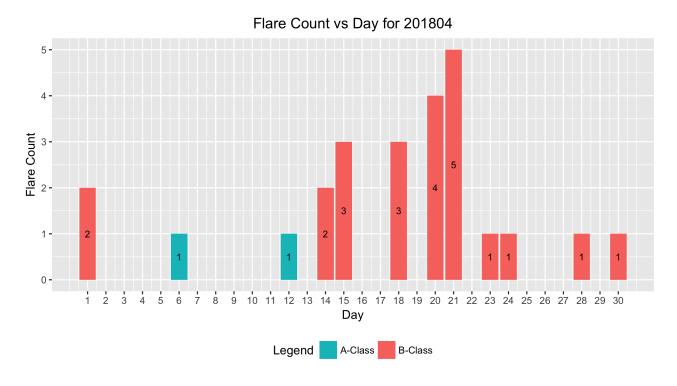



Figure 5: GOES - 15 XRA flares

## 3 Relative Sunspot Numbers (Ra)

Reporting monthly sunspot numbers consists of submitting an individual observer's daily counts for a specific month to the AAVSO Solar Section. These data are maintained in a SQL database. The monthly data then are extracted for analysis. This section is the portion of the analysis concerned with both the raw and daily average counts for a particular month. Scrubbing and filtering the data assure error-free data are used to determine the monthly sunspot numbers.

### 3.1 Raw Sunspot Counts

The raw daily sunspot counts consist of submitted counts from all observers who provided data in April 2018. These counts are reported by the day of the month, and are either from data not scrubbed or corrected data.

The reported raw daily average counts have been checked for errors and inconsistencies, and no known errors are present. All observers whose submissions qualify through this month's scrubbing process are represented in Figure 7.

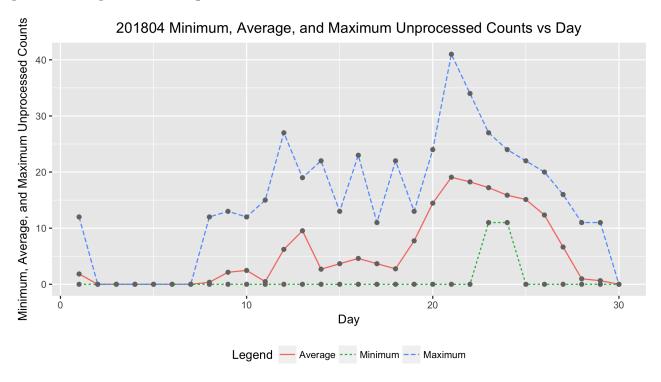



Figure 6: Raw average, minimum and maximum counts by day of the month for all observers.

#### 3.2 American Relative Sunspot Numbers

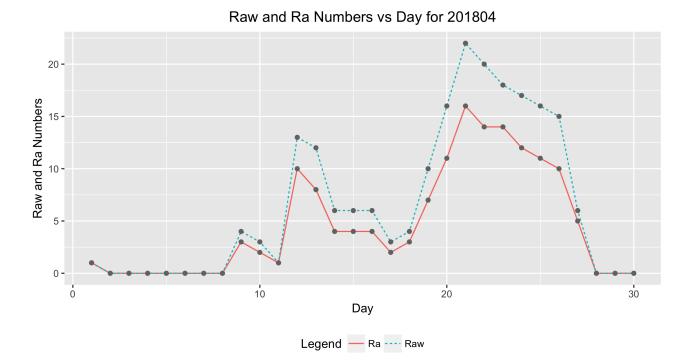

The relative sunspot numbers,  $R_a$  contain the sunspot numbers after the submitted data are scrubbed and modeled by Shapley's method with k-factors (http://iopscience.iop.org/article/10.1086/126109/pdf). The Shapley method is a statistical model that agglomerates variation due to random effects such as observer and fixed effects such as seeing condition. See Table 2.

Table 2: 201804 American Relative Sunspot Numbers (Ra)

| Day     | NumObs | Raw | Ra  |
|---------|--------|-----|-----|
| 1       | 31     | 1   | 1   |
| 2       | 31     | 0   | 0   |
| 3       | 28     | 0   | 0   |
| 4       | 32     | 0   | 0   |
| 5       | 41     | 0   | 0   |
| 6       | 31     | 0   | 0   |
| 7       | 32     | 0   | 0   |
| 8       | 34     | 0   | 0   |
| 9       | 28     | 4   | 3   |
| 10      | 32     | 3   | 2   |
| 11      | 32     | 1   | 1   |
| 12      | 32     | 13  | 10  |
| 13      | 26     | 12  | 8   |
| 14      | 29     | 6   | 4   |
| 15      | 24     | 6   | 4   |
| 16      | 28     | 6   | 4   |
| 17      | 33     | 3   | 2   |
| 18      | 37     | 4   | 3   |
| 19      | 35     | 10  | 7   |
| 20      | 44     | 16  | 11  |
| 21      | 39     | 22  | 16  |
| 22      | 44     | 20  | 14  |
| 23      | 32     | 18  | 14  |
| 24      | 31     | 17  | 12  |
| 25      | 37     | 16  | 11  |
| 26      | 38     | 15  | 10  |
| 27      | 33     | 6   | 5   |
| 28      | 34     | 0   | 0   |
| 29      | 34     | 0   | 0   |
| 30      | 35     | 0   | 0   |
| Averges | 33.2   | 6.6 | 4.7 |

## 3.3 Sunspot Observers

Table 3 lists the observer code (obs), the number of observations submitted for April 2018, and the observer's name. The final rows of the table give the total number of observers who submitted sunspot counts and the total number of observations submitted. The total number of observers is 67 and the total number of observations is 997.



## Figure 7: Raw Wolf and Ra numbers by day of the month for all observers.

Table 3: 201804 Number of observations by observer

| Obs                  | NumObs | Name                  |
|----------------------|--------|-----------------------|
| AJV                  | 14     | J. Alonso             |
| ARAG                 | 29     | Gema Araujo           |
| ASA                  | 26     | Salvador Aguirre      |
| ATE                  | 6      | Teofilo Arranz Heras  |
| BARH                 | 8      | Howard Barnes         |
| BATR                 | 5      | Roberto Battaiola     |
| BDDA                 | 11     | Diego Bastiani        |
| BERJ                 | 19     | Jose Alberto Berdejo  |
| BGAF                 | 1      | Gabriel Bandy         |
| BMF                  | 20     | Michael Boschat       |
| BRAD                 | 29     | David Branchett       |
| BRAF                 | 24     | Raffaello Braga       |
| BROB                 | 6      | Robert Brown          |
| BSAB                 | 26     | Santanu Basu          |
| CHAG                 | 29     | German Morales Chavez |
| CIOA                 | 18     | Ioannis Chouinavas    |
| CKB                  | 15     | Brian Cudnik          |
| $\operatorname{CNT}$ | 10     | Dean Chantiles        |
| $\mathrm{CVJ}$       | 22     | Jose Carvajal         |
| DEMF                 | 6      | Frank Dempsey         |
| DMIB                 | 26     | Michel Deconinck      |

Continued on next page

Table 3: 201804 Number of observations by observer

| Obs                   | NumObs | Name                     |
|-----------------------|--------|--------------------------|
| DROB                  | 3      | Bob Dudley               |
| DUBF                  | 28     | Franky Dubois            |
| ERB                   | 12     | Bob Eramia               |
| FERJ                  | 17     | Javier Ruiz Fernandez    |
| FLET                  | 22     | Tom Fleming              |
| FLF                   | 12     | Fredirico Luiz Funari    |
| FTAA                  | 13     | Tadeusz Figiel           |
| FUJK                  | 23     | K. Fujimori              |
| HAYK                  | 10     | Kim Hay                  |
| HIVB                  | 2      | Ivan Hajdinjak           |
| $_{ m HMQ}$           | 7      | Mark Harris              |
| HOWR                  | 21     | Rodney Howe              |
| JDAC                  | 9      | David Jackson            |
| $_{ m JGE}$           | 2      | Gerardo Jimenez Lopez    |
| JPG                   | 5      | Penko Jordanov           |
| KAPJ                  | 20     | John Kaplan              |
| KNJS                  | 30     | James & Shirley Knight   |
| KROL                  | 18     | Larry Krozel             |
| LEVM                  | 20     | Monty Leventhal          |
| LKR                   | 4      | Kristine Larsen          |
| LRRA                  | 12     | Robert Little            |
| MARE                  | 12     | Enrico Mariani           |
| MCE                   | 24     | Etsuiku Mochizuki        |
| $\operatorname{MILJ}$ | 8      | Jay Miller               |
| MJHA                  | 27     | John McCammon            |
| MUDG                  | 11     | George Mudry             |
| MWU                   | 15     | Walter Maluf             |
| OATS                  | 1      | Susan Oatney             |
| ONJ                   | 13     | John O'Neill             |
| RLM                   | 10     | Mat Raymonde             |
| SDOH                  | 30     | Solar Dynamics Obs - HMI |
| SIMC                  | 6      | Clyde Simpson            |
| SMNA                  | 4      | Michael Stephanou        |
| SNE                   | 2      | Neil Simmons             |
| SONA                  | 14     | Andries Son              |
| SPIA                  | 5      | Piotr Skorupski          |
| STAB                  | 24     | Brian Gordon-States      |
| SUZM                  | 22     | Miyoshi Suzuki           |
| TESD                  | 26     | David Teske              |
| TPJB                  | 4      | Patrick Thibault         |
| URBP                  | 28     | Piotr Urbanski           |
| VARG                  | 27     | A. Gonzalo Vargas        |
| VIDD                  | 18     | Daniel Vidican           |
| WCHD                  | 5      | Charles White            |

Continued on next page

ObsNumObsNameWGI2Guido WollenhauptWILW19William M. WilsonTotals99767

Table 3: 201804 Number of observations by observer

#### 3.4 Generalized Linear Model of Sunspot Numbers

Dr. Jamie Riggs, Solar System Science Section Head, International Astrostatistics Association, maintains a relative sunspot number  $(R_a)$  model containing the sunspot numbers after the submitted data are scrubbed and modeled by a Generalized Linear Mixed Model (GLMM), which is a different model method from the Shapley method of calculating  $R_a$  in Section 3 above. The GLMM is a statistical model that accounts for variation due to random effects and fixed effects. For the GLMM  $R_a$  model random effects include the AAVSO observer as these observers are a selection from all possible observers, and the fixed effects include seeing conditions at one of four possible levels. More details on GLMM are available in a paper (GLMM05) on http://www.spesi.org/?page\_id=65 of the sunspot counts research page. The paper title is A Generalized Linear Mixed Model for Enumerated Sunspots.

Figure 8 shows the monthly GLMM  $R_a$  numbers for the 24th solar cycle to date. The solid cyan curve that connects the red X's is the GLMM model  $R_a$  estimates of excellent seeing conditions, which in part explains why these  $R_a$  estimates often are higher than the Shapley  $R_a$  values. The dotted black curves on either side of the cyan curve depict a 99% confidence band about the GLMM estimates. The confidence band uses the large sample approximation based on the Gaussian distribution. The green dotted curve connecting the green triangles is the Shapley method  $R_a$  numbers. The dashed blue curve connecting the blue O's is the SILSO values for the monthly sunspot numbers.

The tan box plots for each month are the actual observations submitted by the AAVSO observers. The heavy solid lines approximately midway in the boxes represent the count medians. The box plot represents the InterQuartile Range (IQR), which depicts from the  $25^{th}$  through the  $75^{th}$  quartiles. The lower and upper whiskers extend 1.5 times the IQR below the  $25^{th}$  quartile, and 1.5 times the IQR above the  $75^{th}$  quartile. The black dots below and above the whiskers traditionally are considered outliers, but with GLMM modeling, they are observations that are accounted for by the GLMM model.

#### 4 Endnotes

Reporting Addresses

- Sunspot Reports: Kim Hay solar@aavso.org
- SID Solar Flare Reports: Rodney Howe ahowe@frii.com

## References

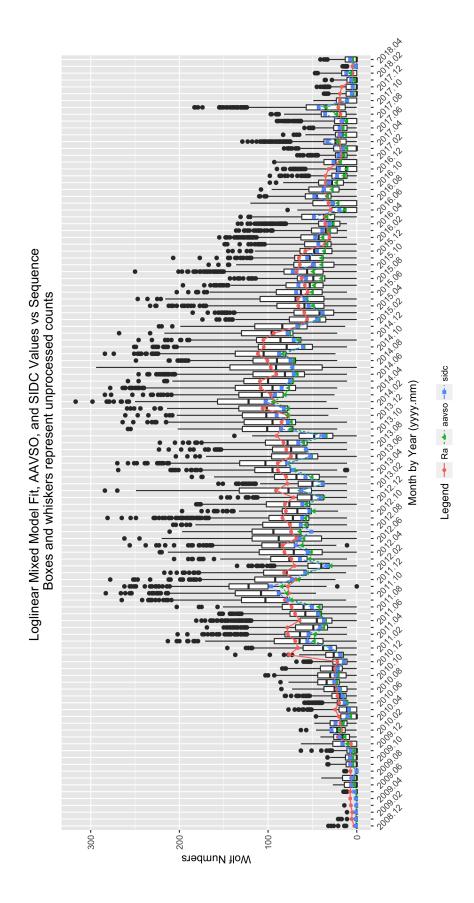



Figure 8: GLMM fitted data for  $R_a$ . AAVSO data: https://www.aavso.org/category/tags/solar-bulletin. SILSO data: WDC-SILSO, Royal Observatory of Belgium, Brussels