Solar Bulletin

THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION

Rodney Howe, Kristine Larsen, Co-Chairs	Web: http://www.aavso.org/solar-bulletin
c/o AAVSO, 49 Bay State Rd	Email: solar@aavso.org
Cambridge, MA 02138 USA	ISSN 0271-8480
Volume 76 Number 7	July 2020

The Solar Bulletin of the AAVSO is a summary of each month's solar activity recorded by visual solar observers' counts of group and sunspots, and the VLF radio recordings of SID Events in the ionosphere. Section 1 gives contributions by our members. The sudden ionospheric disturbance report is in Section 2. The relative sunspot numbers are in Section 3. Section 4 has endnotes.

1 Monty Leventhal (LEVM) projects AR2768 and AR2769 on to a solar disk for the end of July

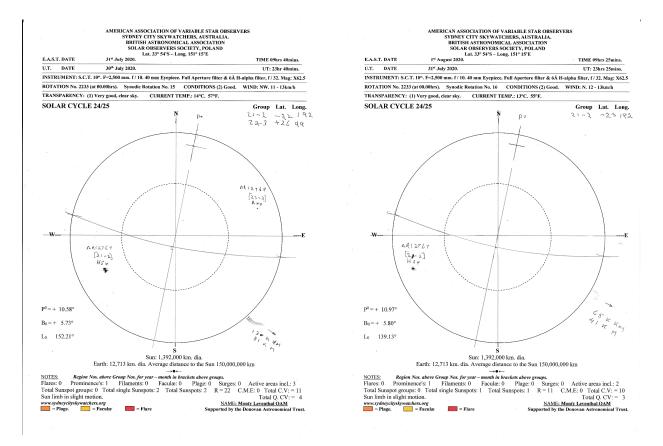


Figure 1: (left) Solar projection for July 30 with very small sunspot AR2768, (right) Solar projection for July 31, with no sunspot for AR2768.

2 Sudden Ionospheric Disturbance (SID) Report

2.1 SID Records

July 2020 (Figure 2): There were no SID events recorded here in Fort Collins, Colorado for the month of July. There was one small A1.1 flare on the 4th of July. (Please note the y-axis values in these SID graphs are non-dimensional.)

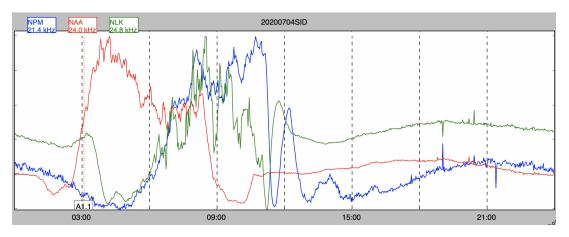


Figure 2: VLF recording at Fort Collins, Colorado.

2.2 SID Observers

In July 2020 we had 14 AAVSO SID observers who submitted VLF data as listed in Table 1. There were no observers who recorded a SID event this month, which matched to GOES-16 XRA and FLA events.

Observer	Code	Stations
R Battaiola	A96	HWU
J Wallace	A97	NAA
L Loudet	A118	DHO GBZ
J Godet	A119	GBZ
B Terrill	A120	NWC
F Adamson	A122	NWC
S Oatney	A125	NML NLK NAA
J Karlovsky	A131	NSY ICV
R Green	A134	NWC
S Aguirre	A138	NPM
G Silvis	A141	HWU NAU
R Rogge	A143	GQD
K Menzies	A146	NAA
L Ferreira	A149	NWC

Table 1: 202007 VLF Observers

Figure 3 depicts the importance rating of the solar events. The duration in minutes are -1: LT 19, 1: 19-25, 1+: 26-32, 2: 33-45, 2+: 46-85, 3: 86-125, and 3+: GT 125.

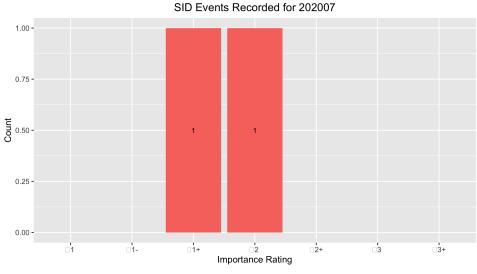


Figure 3: VLF SID Events.

2.3 Solar Flare Summary from GOES-16 Data

In July 2020, there were two A-class flares recorded from GOES-16. Far less flaring this month compared to last. There were 29 days this month with no GOES-16 reports of flares (see Figure 4).

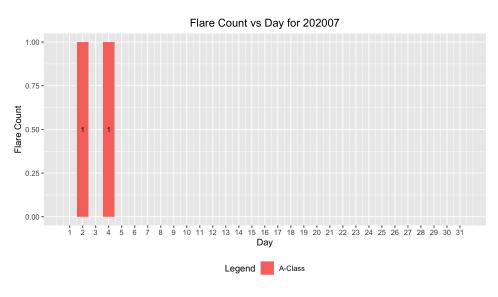


Figure 4: GOES-16 XRA flares

3 Relative Sunspot Numbers (R_a)

Reporting monthly sunspot numbers consists of submitting an individual observer's daily counts for a specific month to the AAVSO Solar Section. These data are maintained in an SQL database. The monthly data then are extracted for analysis. This section is the portion of the analysis concerned with both the raw and daily average counts for a particular month. Scrubbing and filtering the data assure error-free data are used to determine the monthly sunspot numbers.

3.1 Raw Sunspot Counts

The raw daily sunspot counts consist of submitted counts from all observers who provided data in July 2020. These counts are reported by the day of the month. The reported raw daily average counts have been checked for errors and inconsistencies, and no known errors are present. All observers whose submissions qualify through this month's scrubbing process are represented in Figure 5.

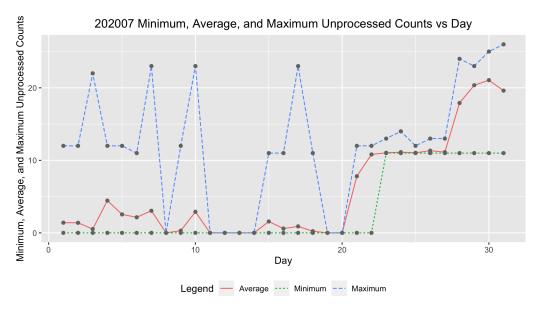


Figure 5: Raw Wolf number average, minimum and maximum by day of the month for all observers.

Raw and Ra Numbers vs Day for 202007

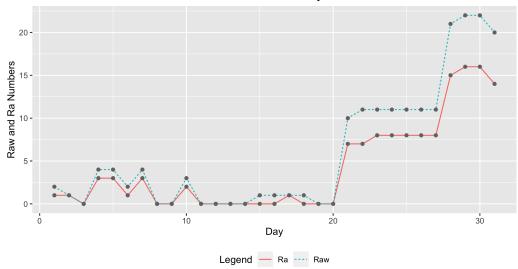


Figure 6: Raw Wolf average and R_a numbers by day of the month for all observers.

3.2 American Relative Sunspot Numbers

The relative sunspot numbers, R_a , contain the sunspot numbers after the submitted data are scrubbed and modeled by Shapley's method with k-factors (http://iopscience.iop.org/article/10.1086/126109/pdf). The Shapley method is a statistical model that agglomerates variation due to random effects, such as observer group selection, and fixed effects, such as seeing condition. The raw Wolf averages and calculated R_a are seen in Figure 6, and Table 2 shows the Day of the observation (column 1), the Number of Observers recording that day (column 2), the raw Wolf number (column 3), and the Shapley Correction (R_a) (column 4).

	Number of		
Day	Observers	Raw	R_a
1	42	2	1
2	49	1	1
3	42	0	0
4	42	4	3
5	44	4	3
6	41	2	1
7	42	4	3
8	38	0	0
9	40	0	0
10	40	3	2
11	41	0	0
12	49	0	0
13	44	0	0
14	38	0	0
Continued			

Table 2: 202007 American Relative Sunspot Numbers (R_a).

Continued

	Number of		
Day	Observers	Raw	R_a
15	35	1	0
16	37	1	0
17	38	1	1
18	48	1	0
19	45	0	0
20	50	0	0
21	41	10	$\overline{7}$
22	43	11	$\overline{7}$
23	46	11	8
24	47	11	8
25	47	11	8
26	48	11	8
27	46	11	8
28	52	21	15
29	56	22	16
30	51	22	16
31	52	20	14
Averages	44.3	6	4.2

Table 2: 202007 American Relative Sunspot Numbers (R_a).

3.3 Sunspot Observers

.

Table 3 lists the Observer Code (column 1), the Number of Observations (column 2) submitted for July 2020, and the Observer Name (column 3). The final rows of the table give the total number of observers who submitted sunspot counts (68), and the total number of observations submitted (1374).

Table 3: 202007 Number of observations by observer.

Observer	Number of	
Code	Observations	Observer Name
AAX	23	Alexandre Amorim
AJV	11	J. Alonso
ARAG	31	Gema Araujo
ASA	23	Salvador Aguirre
ATE	31	Teofilo Arranz Heras
BARH	12	Howard Barnes
BATR	11	Roberto Battaiola
BERJ	30	Jose Alberto Berdejo
BLAJ	19	John A. Blackwell
BMF	23	Michael Boschat
BRAF	21	Raffaello Braga
BROB	31	Robert Brown

Continued

		U U
Observer	Number of	
Code	Observations	Observer Name
CHAG	31	German Morales Chavez
CIOA	8	Ioannis Chouinavas
CKB	28	Brian Cudnik
CNT	30	Dean Chantiles
CVJ	5	Jose Carvajal
DEMF	18	Frank Dempsey
DIVA	17	Ivo Demeulenaere
DJOB	19	Jorge del Rosario
DMIB	28	Michel Deconinck
DROB	17	Bob Dudley
DUBF	28	Franky Dubois
EHOA	21	Howard Eskildsen
ERB	25	Bob Eramia
FERJ	23	Javier Ruiz Fernandez
FLET	29	Tom Fleming
FUJK	9	K. Fujimori
GIGA	9	Igor Grgeda Mndez
HAYK	26	Kim Hay
HMQ	21	Mark Harris
HOWR	25	Rodney Howe
HRUT	23	Timothy Hrutkay
JDAC	4	David Jackson
JENS	6	Simon Jenner
JGE	14	Gerardo Jimenez Lopez
KAND	16	Kandilli Observatory
KAPJ	17	John Kaplan
KNJS	31	James & Shirley Knight
LEVM	18	Monty Leventhal
LGEC	14	Georgios Lekkas
LKR	4	Kristine Larsen
LRRA	25	Robert Little
MARC	24	Arnaud Mengus
MARE	12	Enrico Mariani
MCE	11	Etsuiku Mochizuki
MILJ	21	Jay Miller
MJAF	31	Juan Antonio Moreno Quesada
MJHA	31	John McCammon
MUDG	15	George Mudry
MWU	28	Walter Maluf
OAAA	20	Al Sadeem Astronomy Observatory
ONJ	23	John O'Neill
PEKT	13	Riza Pektas
CDOU	91	

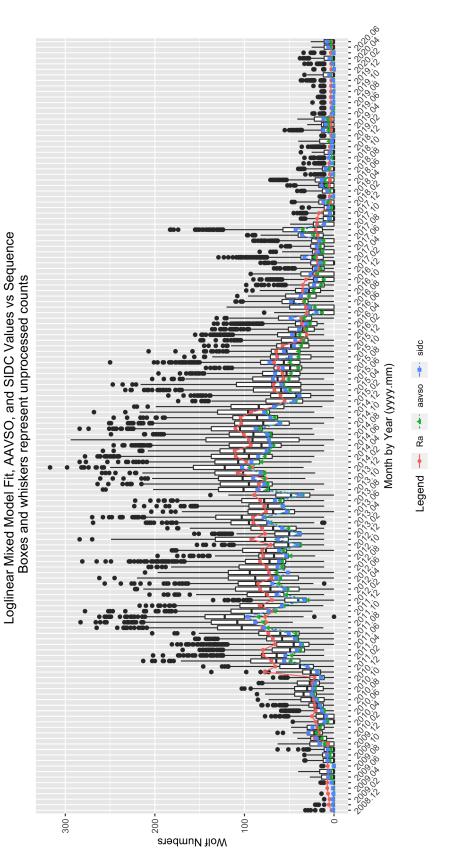
Solar Dynamics Obs - HMI

Table 3: 202007 Number of observations by observer.

SDOH Continued 31

Page	8

Observer	Number of	
Code	Observations	Observer Name
SNE	20	Neil Simmons
SONA	15	Andries Son
STAB	31	Brian Gordon-States
SUZM	15	Miyoshi Suzuki
SVAE	7	Valery Stanimirov
TESD	30	David Teske
TPJB	1	Patrick Thibault
TST	27	Steven Toothman
URBP	29	Piotr Urbanski
VARG	31	A. Gonzalo Vargas
VIDD	14	Daniel Vidican
WGI	8	Guido Wollenhaupt
WILW	31	William M. Wilson
Totals	1374	68


Table 3: 202007 Number of observations by observer.

3.4 Generalized Linear Model of Sunspot Numbers

Dr. Jamie Riggs, Solar System Science Section Head, International Astrostatistics Association, maintains a relative sunspot number (R_a) model containing the sunspot numbers after the submitted data are scrubbed and modeled by a Generalized Linear Mixed Model (GLMM), which is a different model method from the Shapley method of calculating R_a in Section 3 above. The GLMM is a statistical model that accounts for variation due to random effects and fixed effects. For the GLMM R_a model, random effects include the AAVSO observer, as these observers are a selection from all possible observers, and the fixed effects include seeing conditions at one of four possible levels. More details on GLMM are available in the paper, A Generalized Linear Mixed Model for Enumerated Sunspots (see 'GLMM06' in the sunspot counts research page at http://www.spesi.org/?page_id=65).

Figure 7 shows the monthly GLMM R_a numbers for the 24th solar cycle to date. The solid cyan curve that connects the red X's is the GLMM model R_a estimates of excellent seeing conditions, which in part explains why these R_a estimates often are higher than the Shapley R_a values. The dotted black curves on either side of the cyan curve depict a 99% confidence band about the GLMM estimates. The confidence band uses the large sample approximation based on the Gaussian distribution. The green dotted curve connecting the green triangles is the Shapley method R_a numbers. The dashed blue curve connecting the blue O's is the SILSO values for the monthly sunspot numbers.


The tan box plots for each month are the actual observations submitted by the AAVSO observers. The heavy solid lines approximately midway in the boxes represent the count medians. The box plot represents the InterQuartile Range (IQR), which depicts from the 25^{th} through the 75^{th} quartiles. The lower and upper whiskers extend 1.5 times the IQR below the 25^{th} quartile, and 1.5 times the IQR above the 75^{th} quartile. The black dots below and above the whiskers traditionally are considered outliers, but with GLMM modeling, they are observations that are accounted for by the GLMM model.

4 Endnotes

- Sunspot Reports: Kim Hay solar@aavso.org
- SID Solar Flare Reports: Rodney Howe ahowe@frii.com

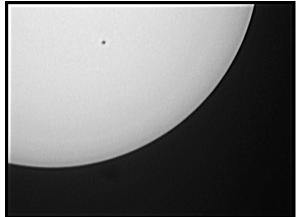


Figure 8: Please find attached two images on the same sun spot in July. First from 24 July (UT0821), the second from 28 July(UT0843). North is up, East at left. There were some AVI film processed picture by picture and the best pictures selected and stack. I used a 3 " refractor F/10, with mylar filter in front of objective and a Philips TUcam. Best regards, Dan Vidican

4.1 Observing Sunspots CHOICE course

With the increase in solar activity, now is a great time to learn more about counting sunspots and improving your skills by signing up for a free online course being taught by AAVSO member and observer Raffaello Braga: Observing and Counting Sunspots - September 14 to October 9, 2020.

To learn more about the course please visit:

https://www.aavso.org/choice-course-descriptions#Sunspots To sign up go here: https://www.aavso.org/choice-astronomy