Solar Bulletin

THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION

Rodney Howe, Kristine Larsen, Co-Chairs c/o AAVSO, 49 Bay State Rd Cambridge, MA 02138 USA

Web: http://www.aavso.org/solar-bulletin Email: solar@aavso.org ISSN 0271-8480

Volume 76 Number 10

October 2020

The Solar Bulletin of the AAVSO is a summary of each month's solar activity recorded by visual solar observers' counts of group and sunspots, and the VLF radio recordings of SID Events in the ionosphere. Section 1 gives contributions by our members. The sudden ionospheric disturbance report is in Section 2. The relative sunspot numbers are in Section 3. Section 4 has endnotes.

1 Sunspot progression over two days for October 26 and 27.

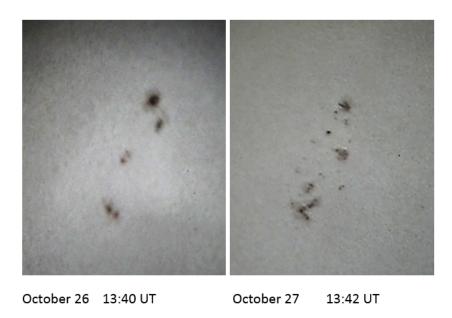


Figure 1: NOAA designation of the AR2778 sunspot progressions over two days.

The start of cycle 25 this month shows 3 group formations and a large number of sunspots. Here we have a two-day progression of a D-class (large group area) AR2778 for the 26 and 27th of October. Photos by Gonzalo Vargas (VARG) of Cochabamba, Bolivia.

2 Sudden Ionospheric Disturbance (SID) Report

2.1 SID Records

October 2020 (Figure 2): Here is the first SID Event for many years of solar minimum recorded by Roberto Battaiolia (A96).

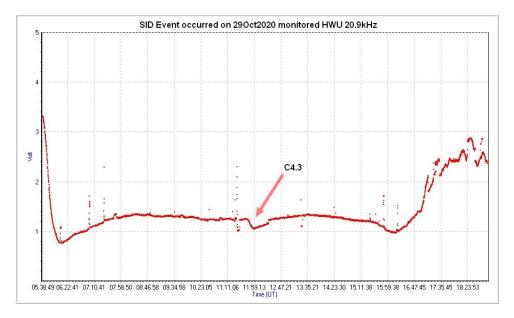


Figure 2: VLF recording from Milan, Italy by Roberto Battaiolia.

2.2 SID Observers

In October 2020 we had 13 AAVSO SID observers who submitted VLF data as listed in Table 1.

Observer	Code	Stations
R Battaiola	A96	HWU
J Wallace	A97	NAA
L Loudet	A118	DHO GBZ
J Godet	A119	GBZ
B Terrill	A120	NWC
F Adamson	A122	NWC
S Oatney	A125	NML NLK NAA
J Karlovsky	A131	NSY ICV
S Aguirre	A138	NPM
G Silvis	A141	NAA NML
R Rogge	A143	GQD
A Maevsky	A151	GQD
H Krumnow	A152	HWU GQD DHO

Table 1: 202010 VLF Observers

Figure 3 depicts the importance rating of the solar events. The duration in minutes are -1: LT 19, 1: 19-25, 1+: 26-32, 2: 33-45, 2+: 46-85, 3: 86-125, and 3+: GT 125.

Figure 3: VLF SID Events.

2.3 Solar Flare Summary from GOES-16 Data

In October 2020, There were 96 XRA flares recorded by GOES-16; two A-class, 80 B-class and 14 C-class flares for October 2020. A large increase in flaring this month compared to last month. There were 15 days this month with no GOES-16 reports of flares (see Figure 4).

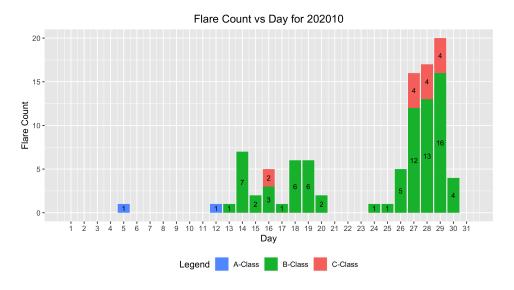


Figure 4: GOES-16 XRA flares

3 Relative Sunspot Numbers (R_a)

Reporting monthly sunspot numbers consists of submitting an individual observer's daily counts for a specific month to the AAVSO Solar Section. These data are maintained in an SQL database. The monthly data then are extracted for analysis. This section is the portion of the analysis concerned with both the raw and daily average counts for a particular month. Scrubbing and filtering the data assure error-free data are used to determine the monthly sunspot numbers.

3.1 Raw Sunspot Counts

The raw daily sunspot counts consist of submitted counts from all observers who provided data in October 2020. These counts are reported by the day of the month. The reported raw daily average counts have been checked for errors and inconsistencies, and no known errors are present. All observers whose submissions qualify through this month's scrubbing process are represented in Figure 5.

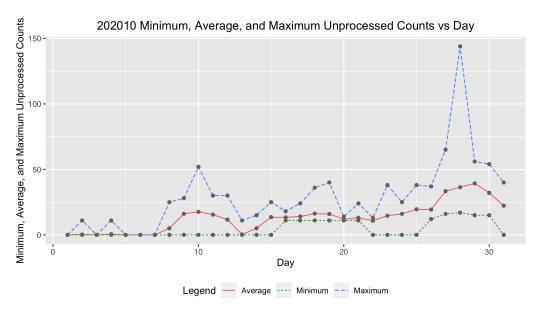


Figure 5: Raw Wolf number average, minimum and maximum by day of the month for all observers.

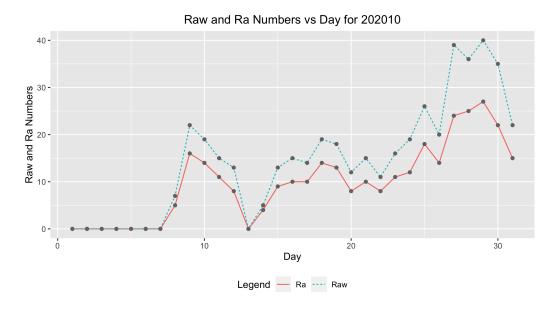


Figure 6: Raw Wolf average and R_a numbers by day of the month for all observers.

3.2 American Relative Sunspot Numbers

The relative sunspot numbers, R_a , contain the sunspot numbers after the submitted data are scrubbed and modeled by Shapley's method with k-factors (http://iopscience.iop.org/article/10.1086/126109/pdf). The Shapley method is a statistical model that agglomerates variation due to random effects, such as observer group selection, and fixed effects, such as seeing condition. The raw Wolf averages and calculated R_a are seen in Figure 6, and Table 2 shows the Day of the observation (column 1), the Number of Observers recording that day (column 2), the raw Wolf number (column 3), and the Shapley Correction (R_a) (column 4).

Table 2: 202010 American Relative Sunspot Numbers (R_a).

	Number of		
Day	Observers	Raw	R_a
1	47	0	0
2	39	0	0
3	38	0	0
4	41	0	0
5	39	0	0
6	38	0	0
7	41	0	0
8	36	7	5
9	39	22	16
10	42	19	14
11	43	15	11
12	39	13	8
13	38	0	0
14	39	5	4
- C 1			

Continued

Number of Day Observers Raw R_a

Table 2: 202010 American Relative Sunspot Numbers (R_a).

3.3 Sunspot Observers

Table 3 lists the Observer Code (column 1), the Number of Observations (column 2) submitted for October 2020, and the Observer Name (column 3). The final row gives the total number of observers who submitted sunspot counts (69), and total number of observations submitted (1181).

38.1

9.9

14.5

Averages

Table 3: 202010 Number of observations by observer.

Observer	Number of	
Code	Observations	Observer Name
AAX	24	Alexandre Amorim
AJV	19	J. Alonso
ARAG	30	Gema Araujo
ASA	24	Salvador Aguirre
ATE	28	Teofilo Arranz Heras
BARH	12	Howard Barnes
BATR	7	Roberto Battaiola
BERJ	29	Jose Alberto Berdejo
BLAJ	12	John A. Blackwell
BMF	22	Michael Boschat
BRAF	16	Raffaello Braga
BROB	30	Robert Brown
CHAG	30	German Morales Chavez
Continued		

Continued

Table 3: 202010 Number of observations by observer.

Observer	Number of	
Code	Observations	Observer Name
CIOA	7	Ioannis Chouinavas
CKB	23	Brian Cudnik
CNT	29	Dean Chantiles
CVJ	12	Jose Carvajal
$\overline{\text{DEMF}}$	13	Frank Dempsey
DIVA	9	Ivo Demeulenaere
DJOB	15	Jorge del Rosario
DMIB	27	Michel Deconinck
DROB	1	Bob Dudley
DUBF	26	Franky Dubois
EHOA	16	Howard Eskildsen
ERB	17	Bob Eramia
FERJ	14	Javier Ruiz Fernandez
FLET	26	Tom Fleming
FTAA	7	Tadeusz Figiel
FUJK	18	K. Fujimori
GIGA	31	Igor Grageda Mendez
HALB	7	Brian Halls
HAYK	19	Kim Hay
$_{ m HMQ}$	20	Mark Harris
HOWR	21	Rodney Howe
IEWA	23	Ernest W. Iverson
$_{ m JDAC}$	1	David Jackson
JENS	2	Simon Jenner
$_{ m JGE}$	10	Gerardo Jimenez Lopez
KAND	14	Kandilli Observatory
KAPJ	19	John Kaplan
KNJS	31	James & Shirley Knight
LEVM	14	Monty Leventhal
$_{\rm LGEC}$	7	Georgios Lekkas
$_{ m LKR}$	5	Kristine Larsen
LRRA	13	Robert Little
MARC	9	Arnaud Mengus
MCE	22	Etsuiku Mochizuki
MGAR	5	Gary Myers
MILJ	18	Jay Miller
MJAF	30	Juan Antonio Moreno Quesada
MJHA	28	John McCammon
MUDG	7	George Mudry
MWU	24	Walter Maluf
OAAA	27	Al Sadeem Astronomy Observatory
ONJ	18	John O'Neill
PEKT	9	Riza Pektas

 ${\bf Continued}$

Observer	Number of	
Code	Observations	Observer Name
SDOH	31	Solar Dynamics Obs - HMI
SJAH	2	Jim Soos
SNE	9	Neil Simmons
SONA	5	Andries Son
STAB	24	Brian Gordon-States
SUZM	22	Miyoshi Suzuki
TESD	25	David Teske
TPJB	1	Patrick Thibault
TST	18	Steven Toothman
URBP	15	Piotr Urbanski
VARG	30	A. Gonzalo Vargas
WGI	1	Guido Wollenhaupt
WILW	21	William M. Wilson
Totals	1181	69

Table 3: 202010 Number of observations by observer.

3.4 Generalized Linear Model of Sunspot Numbers

Dr. Jamie Riggs, Solar System Science Section Head, International Astrostatistics Association, maintains a relative sunspot number (R_a) model containing the sunspot numbers after the submitted data are scrubbed and modeled by a Generalized Linear Mixed Model (GLMM), which is a different model method from the Shapley method of calculating R_a in Section 3 above. The GLMM is a statistical model that accounts for variation due to random effects and fixed effects. For the GLMM R_a model, random effects include the AAVSO observer, as these observers are a selection from all possible observers, and the fixed effects include seeing conditions at one of four possible levels. More details on GLMM are available in the paper, A Generalized Linear Mixed Model for Enumerated Sunspots (see 'GLMM06' in the sunspot counts research page at http://www.spesi.org/?page_id=65).

Figure 7 shows the monthly GLMM R_a numbers for a rolling eleven-year (132 months) window beginning within the 24th solar cycle and ending with last month's sunspot numbers. The solid cyan curve that connects the red X's is the GLMM model R_a estimates of excellent seeing conditions, which in part explains why these R_a estimates often are higher than the Shapley R_a values. The dotted black curves on either side of the cyan curve depict a 99% confidence band about the GLMM estimates. The confidence band uses the large sample approximation based on the Gaussian distribution. The green dotted curve connecting the green triangles is the Shapley method R_a numbers. The dashed blue curve connecting the blue O's is the SILSO values for the monthly sunspot numbers.

The tan box plots for each month are the actual observations submitted by the AAVSO observers. The heavy solid lines approximately midway in the boxes represent the count medians. The box plot represents the InterQuartile Range (IQR), which depicts from the 25^{th} through the 75^{th} quartiles. The lower and upper whiskers extend 1.5 times the IQR below the 25^{th} quartile, and 1.5 times the IQR above the 75^{th} quartile. The black dots below and above the whiskers traditionally are considered outliers, but with GLMM modeling, they are observations that are accounted for by the GLMM model.

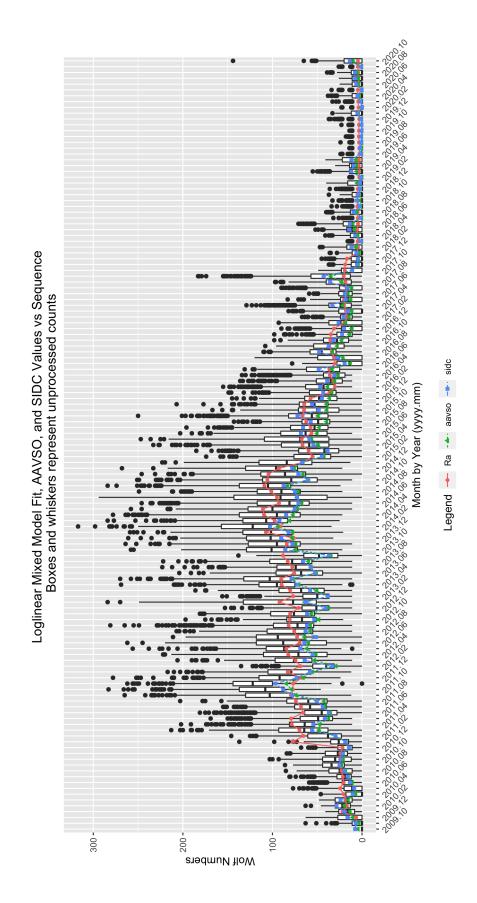


Figure 7: GLMM fitted data for R_a . AAVSO data: https://www.aavso.org/category/tags/solar-bulletin. SIDC data: WDC-SILSO, Royal Observatory of Belgium, Brussels

4 Endnotes

- Sunspot Reports: Kim Hay solar@aavso.org
- SID Solar Flare Reports: Rodney Howe ahowe@frii.com



Figure 8: I know that sometimes you like to add my sun's work in your bulletin, be sure that I appreciate that! Here I join the October AR2776 development. Michel Deconinck. (https://astro.aquarellia.com)