# Solar Bulletin

# THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION



November 2022

Rodney Howe, Kristine Larsen, Co-Chairs c/o AAVSO, 185 Alewife Brook Parkway, Cambridge, MA 02138 USA Web: http://www.aavso.org/solar-bulletin Email: solar@aavso.org ISSN 0271-8480

Volume 78 Number 11

The Solar Bulletin of the AAVSO is a summary of each month's solar activity recorded by visual solar observers' counts of group and sunspots, and the VLF radio recordings of SID Events in the ionosphere. The sudden ionospheric disturbance report is in Section 2. The relative sunspot numbers are in Section 3. Section 4 has endnotes.

# 1 Solar magnetic fields from two data sets

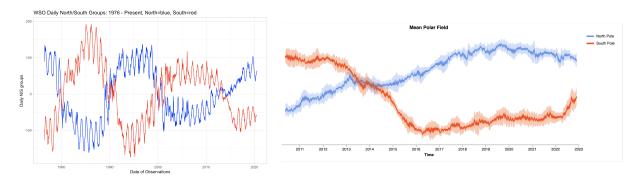



Figure 1: Wilcox Solar Observatory (2022) and Solar Dynamics Observatory (2022) satellite data.

These two data sets are used to determine the solar north and south magnetic polarity and the crossovers for the 22-year magnetic cycle. A 44-year time series (1976 to present) of daily average data was recorded by the WSO. The SDO satellite data (Project Jupyter et al., 2016) begin in 2010, and show the cycle 24 polarity fields and how they are predicted to cross over in a year or two (Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams, 2022). There has been an overall decline in the magnetic flux during the last 44 years, implying the solar polar magnetic fields have weakened over the last 4 solar cycles (Munoz-Jaramillo, 2012).

# 2 Sudden Ionospheric Disturbance (SID) Report

### 2.1 SID Records

November 2022 (Figure 2): on the 11th, there were 21 flares recorded here in Fort Collins, Colorado.

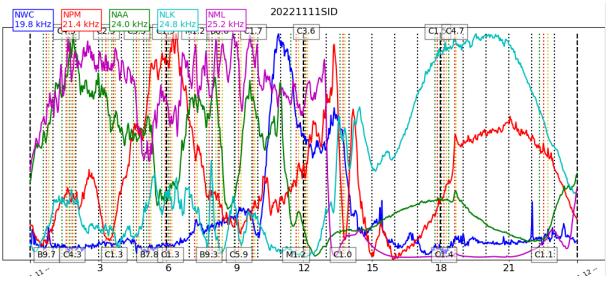



Figure 2: VLF recording from Fort Collins, Colorado.

### 2.2 SID Observers

In November 2022, 11 AAVSO SID observers who submitted VLF data as listed in Table 1.

| Code | Stations                                                                   |
|------|----------------------------------------------------------------------------|
| A96  | HWU                                                                        |
| A97  | NAA                                                                        |
| A122 | NWC                                                                        |
| A131 | DHO NAA TBB                                                                |
| A136 | GQD NSY                                                                    |
| A138 | NPM NAA                                                                    |
| A146 | NAA                                                                        |
| A148 | NAA NLK NML                                                                |
| A152 | FTA GBZ HWU                                                                |
| A153 | NLK                                                                        |
| A155 | NLK NML                                                                    |
|      | A96<br>A97<br>A122<br>A131<br>A136<br>A138<br>A146<br>A148<br>A152<br>A153 |

| Table | 1.         | 202211 | VLF    | Observers   |
|-------|------------|--------|--------|-------------|
| Table | <b>T</b> • | 202211 | V LJ L | O DBCI VCID |

Figure 3 depicts the importance rating of the solar events. The duration in minutes are -1: LT 19, 1: 19-25, 1+: 26-32, 2: 33-45, 2+: 46-85, 3: 86-125, and 3+: GT 125.

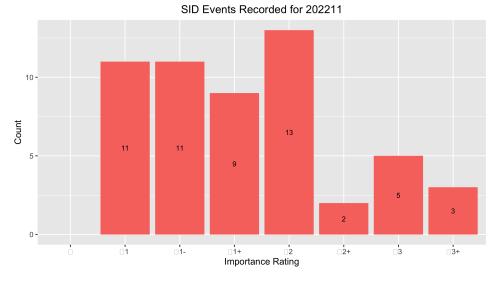



Figure 3: VLF SID Events.

### 2.3 Solar Flare Summary from GOES-16 Data

In November 2022, there were 223 XRA flares: 6 M-class, 155 C-class, and 62 B-class flares (NOAA, 2022). A little less flaring this month compared to last month (Figure 4).

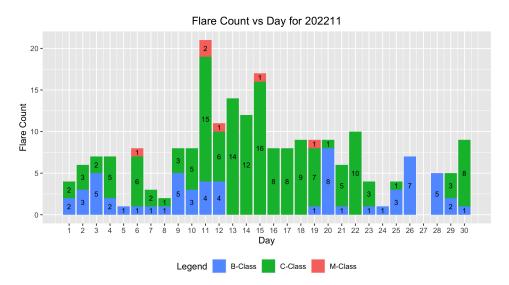



Figure 4: GOES-16 XRA flares

### Page 4

# 3 Relative Sunspot Numbers $(R_a)$

Reporting monthly sunspot numbers consists of submitting an individual observer's daily counts for a specific month to the AAVSO Solar Section. These data are maintained in a Structured Query Language (SQL) database. The monthly data then are extracted for analysis. This section is the portion of the analysis concerned with both the raw and daily average counts for a particular month. Scrubbing and filtering the data assure error-free data are used to determine the monthly sunspot numbers.

### 3.1 Raw Sunspot Counts

The raw daily sunspot counts consist of submitted counts from all observers who provided data in November 2022. These counts are reported by the day of the month. The reported raw daily average counts have been checked for errors and inconsistencies, and no known errors are present. All observers whose submissions qualify through this month's scrubbing process are represented in Figure 5.

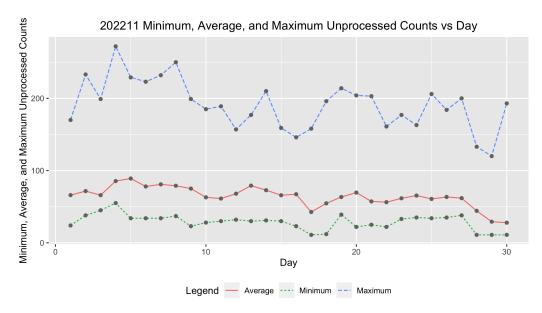



Figure 5: Raw Wolf number average, minimum and maximum by day of the month for all observers.

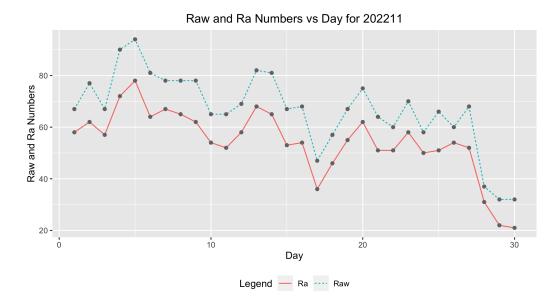



Figure 6: Raw Wolf average and  $R_a$  numbers by day of the month for all observers.

### 3.2 American Relative Sunspot Numbers

The relative sunspot numbers,  $R_a$ , contain the sunspot numbers after the submitted data are scrubbed and modeled by Shapley's method with k-factors (http://iopscience.iop.org/article/ 10.1086/126109/pdf). The Shapley method is a statistical model that agglomerates variation due to random effects, such as observer group selection, and fixed effects, such as seeing condition. The raw Wolf averages and calculated  $R_a$  are seen in Figure 6, and Table 2 shows the Day of the observation (column 1), the Number of Observers recording that day (column 2), the raw Wolf number (column 3), and the Shapley Correction ( $R_a$ ) (column 4).

|           | Number of |     |       |
|-----------|-----------|-----|-------|
| Б         |           | D   | Б     |
| Day       | Observers | Raw | $R_a$ |
| 1         | 33        | 67  | 58    |
| 2         | 40        | 77  | 62    |
| 3         | 38        | 67  | 57    |
| 4         | 41        | 90  | 72    |
| 5         | 39        | 94  | 78    |
| 6         | 36        | 81  | 64    |
| 7         | 39        | 78  | 67    |
| 8         | 38        | 78  | 65    |
| 9         | 39        | 78  | 62    |
| 10        | 39        | 65  | 54    |
| 11        | 33        | 65  | 52    |
| 12        | 29        | 69  | 58    |
| 13        | 37        | 82  | 68    |
| 14        | 26        | 81  | 65    |
| Continued |           |     |       |

Table 2: 202211 American Relative Sunspot Numbers (R<sub>a</sub>).

Continued

|          | Number of |      |       |
|----------|-----------|------|-------|
| Day      | Observers | Raw  | $R_a$ |
| 15       | 26        | 67   | 53    |
| 16       | 32        | 68   | 54    |
| 17       | 32        | 47   | 36    |
| 18       | 35        | 57   | 46    |
| 19       | 36        | 67   | 55    |
| 20       | 38        | 75   | 62    |
| 21       | 30        | 64   | 51    |
| 22       | 35        | 60   | 51    |
| 23       | 36        | 70   | 58    |
| 24       | 35        | 58   | 50    |
| 25       | 34        | 66   | 51    |
| 26       | 36        | 60   | 54    |
| 27       | 34        | 68   | 52    |
| 28       | 29        | 37   | 31    |
| 29       | 22        | 32   | 22    |
| 30       | 26        | 32   | 21    |
| Averages | 34.1      | 66.7 | 54.3  |

Table 2: 202211 American Relative Sunspot Numbers (R<sub>a</sub>).

#### 3.3 Sunspot Observers

Table 3 lists the Observer Code (column 1), the Number of Observations (column 2) submitted for November 2022, and the Observer Name (column 3). The final row gives the total number of observers who submitted sunspot counts (67), and total number of observations submitted (1023).

Table 3: 202211 Number of observations by observer.

| Observer   | Number of    |                      |
|------------|--------------|----------------------|
| Code       | Observations | Observer Name        |
| AAX        | 21           | Alexandre Amorim     |
| AJV        | 16           | J. Alonso            |
| ARAG       | 27           | Gema Araujo          |
| ASA        | 21           | Salvador Aguirre     |
| ATE        | 18           | Teofilo Arranz Heras |
| BATR       | 6            | Roberto Battaiola    |
| BMF        | 23           | Michael Boschat      |
| BMIG       | 17           | Michel Besson        |
| BXZ        | 16           | Jose Alberto Berdejo |
| BZX        | 26           | A. Gonzalo Vargas    |
| CIOA       | 8            | Ioannis Chouinavas   |
| CKB        | 23           | Brian Cudnik         |
| CMAB       | 11           | Maurizio Cervoni     |
| CMOD       | 1            | Mois Carlo           |
| Continue 1 |              |                      |

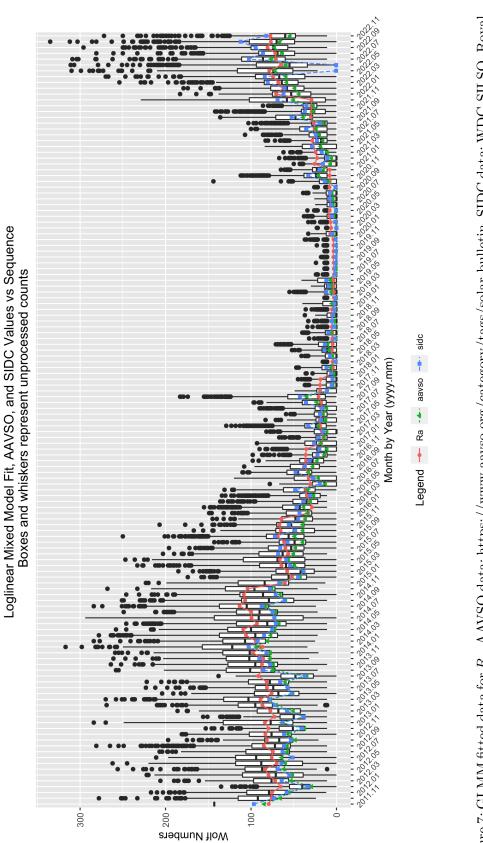
Continued

| Observer | Number of    |                             |
|----------|--------------|-----------------------------|
| Code     | Observations | Observer Name               |
| CNT      | 21           | Dean Chantiles              |
| CVJ      | 2            | Jose Carvajal               |
| DARB     | 1            | Aritra Das                  |
| DELS     | 14           | Susan Delaney               |
| DFR      | 6            | Frank Dempsey               |
| DJOB     | 13           | Jorge del Rosario           |
| DMIB     | 16           | Michel Deconinck            |
| DUBF     | 22           | Franky Dubois               |
| EGMA     | 26           | Georgios Epitropou          |
| EHOA     | 8            | Howard Eskildsen            |
| ERB      | 13           | Bob Eramia                  |
| FERA     | 6            | Eric Fabrigat               |
| FLET     | 21           | Tom Fleming                 |
| GIGA     | 30           | Igor Grageda Mendez         |
| HALB     | 10           | Brian Halls                 |
| HKY      | 20           | Kim Hay                     |
| HOWR     | 21           | Rodney Howe                 |
| IEWA     | 15           | Ernest W. Iverson           |
| ILUB     | 6            | Luigi Iapichino             |
| JDAC     | 1            | David Jackson               |
| JGE      | 3            | Gerardo Jimenez Lopez       |
| KAMB     | 30           | Amoli Kakkar                |
| KAND     | 20           | Kandilli Observatory        |
| KAPJ     | 8            | John Kaplan                 |
| KNJS     | 30           | James & Shirley Knight      |
| LEVM     | 12           | Monty Leventhal             |
| LKR      | 10           | Kristine Larsen             |
| LRRA     | 21           | Robert Little               |
| MARC     | 4            | Arnaud Mengus               |
| MARE     | 9            | Enrico Mariani              |
| MCE      | 21           | Etsuiku Mochizuki           |
| MJAF     | 28           | Juan Antonio Moreno Quesada |
| MJHA     | 29           | John McCammon               |
| MLL      | 13           | Jay Miller                  |
| MMAY     | 30           | Max Surlaroute              |
| MMI      | 30           | Michael Moeller             |
| MUDG     | 1            | George Mudry                |
| MWU      | 18           | Walter Maluf                |
| OAAA     | 14           | Al Sadeem Astronomy Obs.    |
| ONJ      | 13           | John O'Neill                |
| PLUD     | 18           | Ludovic Perbet              |
| RJV      | 13           | Javier Ruiz Fernandez       |
| ··· ·    |              |                             |

Table 3: 202211 Number of observations by observer.

Continued

| Observer | Number of    |                   |
|----------|--------------|-------------------|
| Code     | Observations | Observer Name     |
| SNE      | 9            | Neil Simmons      |
| SRIE     | 23           | Rick St. Hilaire  |
| SVAE     | 1            | Valery Stanimirov |
| TDE      | 26           | David Teske       |
| TPJB     | 3            | Patrick Thibault  |
| TST      | 18           | Steven Toothman   |
| URBP     | 5            | Piotr Urbanski    |
| VIDD     | 6            | Dan Vidican       |
| WGI      | 3            | Guido Wollenhaupt |
| WWM      | 18           | William M. Wilson |
| Totals   | 1023         | 67                |


Table 3: 202211 Number of observations by observer.

#### 3.4 Generalized Linear Model of Sunspot Numbers

Dr. Jamie Riggs, Solar System Science Section Head, International Astrostatistics Association, maintains a relative sunspot number  $(R_a)$  model containing the sunspot numbers after the submitted data are scrubbed and modeled by a Generalized Linear Mixed Model (GLMM), which is a different model method from the Shapley method of calculating  $R_a$  in Section 3 above. The GLMM is a statistical model that accounts for variation due to random effects and fixed effects. For the GLMM  $R_a$  model, random effects include the AAVSO observer, as these observers are a selection from all possible observers, and the fixed effects include seeing conditions at one of four possible levels. More details on GLMM are available in the paper, A Generalized Linear Mixed Model for Enumerated Sunspots (see 'GLMM06' in the sunspot counts research page at http://www.spesi.org/?page\_id=65).

Figure 7 shows the monthly GLMM  $R_a$  numbers for a rolling eleven-year (132-month) window beginning within the 24th solar cycle and ending with last month's sunspot numbers. The solid cyan curve that connects the red X's is the GLMM model  $R_a$  estimates of excellent seeing conditions, which in part explains why these  $R_a$  estimates often are higher than the Shapley  $R_a$  values. The dotted black curves on either side of the cyan curve depict a 99% confidence band about the GLMM estimates. The green dotted curve connecting the green triangles is the Shapley method  $R_a$  numbers. The dashed blue curve connecting the blue O's is the SILSO values for the monthly sunspot numbers.

The tan box plots for each month are the actual observations submitted by the AAVSO observers. The heavy solid lines approximately midway in the boxes represent the count medians. The box plot represents the InterQuartile Range (IQR), which depicts from the  $25^{th}$  through the  $75^{th}$ quartiles. The lower and upper whiskers extend 1.5 times the IQR below the  $25^{th}$  quartile, and 1.5 times the IQR above the  $75^{th}$  quartile. The black dots below and above the whiskers traditionally are considered outliers, but with GLMM modeling, they are observations that are accounted for by the GLMM model.





## 4 Endnotes

- Sunspot Reports: Kim Hay solar@aavso.org
- SID Solar Flare Reports: Rodney Howe rhowe137@icloud.com

Max Surlaroute (MMAY) used data from Wilcox Solar Observatory (2022) at Stanford for magnetic fields as well as data from Kanzelhoe Solar Observatory (2022), Austria, for the number of North and South hemisphere sunspots.

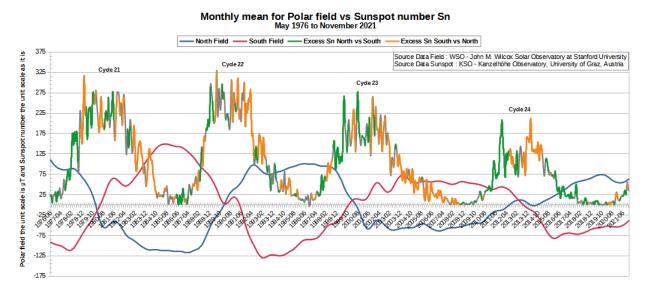



Figure 8: This graph was created by Max Surlaroute (MMAY). Notice how the Wilcox Solar Observatory polar field data and the Kanzelhoe Solar Observatory sunspot data have weakened over the last four solar cycles. Data for this graph come from both observatories.

## References

- Project Jupyter, Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C. (2016). Jupyter Notebooks—a publishing format for reproducible computational workflows. In F. Loizides B. Schmidt (Eds.), *Positioning and Power in Academic Publishing: Players, Agents and Agendas* (pp. 87–90). https://nbviewer.org/github/mbobra/plotting-polar-field/blob/master/plot\_polarfield\_d3.ipynb
- Munoz-Jaramillo, A., et al. (2012). Calibrating 100 years of polar faculae measurements: Implications for the evolution of the heliospheric magnetic field. *The Astrophysical Journal*, 753(2), 146. https://doi.org/10.1088/0004-637X/753/2/146

- National Aeronautics and Space Administration Solar Dynamics Observatory. (2022, December 15). *Latest observations: 15.12.2022*. https://sdo.gsfc.nasa.gov/
- Observatory Kanzelhohe for Solar and Environmental Research. (2022, December 15). *Latest* observations: 15.12.2022. https://www.kso.ac.at/index\_en.php
- SILSO, World Data Center Sunspot Number and Long-term Solar Observations. (2022). *Sunspot number catalogue, 1850-2022* [data set]. Royal Observatory of Belgium. https://www.sidc.be/silso/datafiles
- Wilcox Solar Observatory. (2022, December 14). Wilcox Solar Observatory Polar Field Observations. http://wso.stanford.edu/Polar.html
- U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center. (2022). *GOES-16 XRA data*, ftp://ftp.swpc.noaa.gov/pub/indices/events/