# Solar Bulletin



# THE AMERICAN ASSOCIATION OF VARIABLE STAR OBSERVERS SOLAR SECTION

| Rodney Howe, Kristine Larsen, Co-Chairs | Web: https://www.aavso.org/solar-bulletin |
|-----------------------------------------|-------------------------------------------|
| c/o AAVSO, 185 Alewife Brook Parkway,   | Email: solar@aavso.org                    |
| Suite 410, Cambridge, MA 02138 USA      | ISSN 0271-8480                            |
| Volume 79 Number 9                      | September 2023                            |

Volume 79 Number 9

The Solar Bulletin of the AAVSO is a summary of each month's solar activity recorded by visual solar observers' counts of group and sunspots, and the very low frequency (VLF) radio recordings of SID Events in the ionosphere. The Co-Chairs thank all of our observers for their diligent work in making scientifically useful measurements of our star's activity. Our goal is to make this Bulletin as informational as possible; if you have ideas for material you would like to see included, please email us at the address above. We are also looking for volunteers to write short (less than 500 words in length) articles related to solar observing or the sun in general. The sudden ionospheric disturbance report is in Section 2. The relative sunspot numbers are in Section 3. Section 4 has endnotes.

#### CCD SDO/HMI imaging skews the AAVSO $R_a$ index values 1



Figure 1: Using the SDO/HMI satellite images for counting groups and sunspots over-counts the AAVSO  $R_a$  values by almost 100 percent. The left panel shows the SDO/HMI vs. the other instruments and demonstrates how highly these SDO/HMI counts affect the current cycle 25 (raw Wolf number shown in right panel).

Over the past few years a few of our observers have been using CCD images from the SDO/HMI satellite to count sunspots. Historically (since 1944) the AAVSO has only counted groups and sunspots from under the Earth's atmosphere with small telescopes, during sunny days. Now with the SDO satellite it's possible to count groups and sunspots above the Earth's atmosphere every day of the month. Here we show how these CCD counts over-estimate the Wolf number over the last couple years.

"Although visual counting of spots may sound archaic in comparison with the many advanced modern solar data collected by ground-based observing networks and space missions (25-year old SOHO, SDO, Parker Probe, Solar Orbiter), they remain our sole link to the distant past. In order to put this detailed but mostly very recent solar knowledge in a temporal perspective, it must be attached to a long-term standard. We need to be able to answer one vital question: is the Sun, as we observe it today, equivalent and representative of the state of the Sun several centuries or millennia in the past and in the future? Therefore, today, we need to continue this heritage series in parallel with all other techniques, in order to calibrate the relation between various solar parameters (spectral irradiance, solar wind flux, global magnetic fields) and the sunspot number, and all of this over the whole range of possible activity regimes (See for example Svalgaard, 2017). This means that we must continue to observe the way we have for at least one or more solar cycles (Clette 2021)".

# 2 Sudden Ionospheric Disturbance (SID) Report

#### 2.1 SID Records

September 2023 (Figure 2): On the 21st there was an M8.7 flare recorded by Roberto Battaiola (A96).



Figure 2: VLF recording from Roberto Battaiola, Milan, Italy.

### 2.2 SID Observers

In September 2023 we had 15 AAVSO SID observers who submitted VLF data as listed in Table 1.

| Observer    | Code | Stations    |
|-------------|------|-------------|
| R Battaiola | A96  | HWU         |
| J Wallace   | A97  | NAA         |
| A Son       | A112 | DHO         |
| L Loudet    | A118 | DHO GQD     |
| J Godet     | A119 | GBZ GQD ICV |
| F Adamson   | A122 | NWC         |
| J Karlovsky | A131 | TBB         |
| R Mrllak    | A136 | GQD NSY     |
| S Aguirre   | A138 | NAA         |
| G Silvis    | A141 | NAA NAU NLK |
| L Pina      | A148 | NAA NLK     |
| J Wendler   | A150 | NAA         |
| H Krumnow   | A152 | DHO FTA GBZ |
| J DeVries   | A153 | NLK         |
| M Salo      | A157 | NLK         |
|             |      |             |

Table 1: 202307 VLF Observers

Figure 3 depicts the importance rating of the solar events. The duration in minutes are -1: LT 19, 1: 19-25, 1+: 26-32, 2: 33-45, 2+: 46-85, 3: 86-125, and 3+: GT 125.



Figure 3: VLF SID Events.

# 2.3 Solar Flare Summary from GOES-16 Data

In September 2023, there were 293 GOES-16 XRA flares: 256 C-class and 34 M-class and and 3 B-class flares. This is about the same as seen last month. (U.S. Dept. of Commerce–NOAA, 2022). (see Figure 4).



Figure 4: GOES-16 XRA flares (U.S. Dept. of Commerce-NOAA, 2022).

# 3 Relative Sunspot Numbers $(R_a)$

Reporting monthly sunspot numbers consists of submitting an individual observer's daily counts for a specific month to the AAVSO Solar Section. These data are maintained in a Structured Query Language (SQL) database. The monthly data are then extracted for analysis. This section is the portion of the analysis concerned with both the raw and daily average counts for a particular month. Scrubbing and filtering the data assure error-free data are used to determine the monthly sunspot numbers.

# 3.1 Raw Sunspot Counts

The raw daily sunspot counts consist of submitted counts from all observers who provided data in September 2023. These counts are reported by the day of the month. The reported raw daily average counts have been checked for errors and inconsistencies, and no known errors are present. As described on the first page, SDO/HMI data are not consistent with AAVSO protocols and are removed in the scrubbing process. All observers whose submissions qualify through this month's scrubbing process are represented in Figure 5.



Figure 5: Raw Wolf number average, minimum and maximum by day of the month for all observers.



Figure 6: Raw Wolf average and  $R_a$  numbers by day of the month for all observers.

#### 3.2 American Relative Sunspot Numbers

The relative sunspot numbers,  $R_a$ , contain the sunspot numbers after the submitted data are scrubbed and modeled by Shapley's method with k-factors (http://iopscience.iop.org/article/ 10.1086/126109/pdf). The Shapley method is a statistical model that agglomerates variation due to random effects, such as observer group selection, and fixed effects, such as seeing condition. The raw Wolf averages and calculated  $R_a$  are seen in Figure 6, and Table 2 shows the Day of the observation (column 1), the Number of Observers recording that day (column 2), the raw Wolf number (column 3), and the Shapley Correction ( $R_a$ ) (column 4).

|          | Number of |       |       |
|----------|-----------|-------|-------|
| Day      | Observers | Raw   | $R_a$ |
| 1        | 42        | 81    | 68    |
| 2        | 40        | 79    | 64    |
| 3        | 41        | 90    | 76    |
| 4        | 40        | 106   | 86    |
| 5        | 39        | 118   | 95    |
| 6        | 43        | 127   | 104   |
| 7        | 42        | 130   | 105   |
| 8        | 43        | 116   | 93    |
| 9        | 39        | 127   | 104   |
| 10       | 41        | 177   | 134   |
| 11       | 40        | 179   | 145   |
| 12       | 33        | 159   | 121   |
| 13       | 30        | 147   | 113   |
| 14       | 37        | 138   | 113   |
| 15       | 32        | 111   | 87    |
| 16       | 38        | 98    | 77    |
| 17       | 37        | 95    | 78    |
| 18       | 38        | 121   | 103   |
| 19       | 45        | 155   | 126   |
| 20       | 38        | 166   | 138   |
| 21       | 35        | 180   | 158   |
| 22       | 45        | 182   | 158   |
| 23       | 40        | 194   | 154   |
| 24       | 43        | 183   | 146   |
| 25       | 39        | 163   | 136   |
| 26       | 40        | 151   | 122   |
| 27       | 36        | 141   | 114   |
| 28       | 34        | 126   | 102   |
| 29       | 36        | 113   | 92    |
| 30       | 41        | 124   | 101   |
| Averages | 38.9      | 135.9 | 110.4 |

Table 2: 202309 American Relative Sunspot Numbers (R<sub>a</sub>).

\_

#### 3.3 Sunspot Observers

Table 3 lists the Observer Code (column 1), the Number of Observations (column 2) submitted for September 2023, and the Observer Name (column 3). The final row gives the total number of observers who submitted sunspot counts (74), and total number of observations submitted (1167).

| Observer       | Number of    |                      |
|----------------|--------------|----------------------|
| Code           | Observations | Observer Name        |
| AAX            | 21           | Alexandre Amorim     |
| AJV            | 15           | J. Alonso            |
| ARAG           | 30           | Gema Araujo          |
| ASA            | 4            | Salvador Aguirre     |
| ATE            | 5            | Teofilo Arranz Heras |
| BATR           | 10           | Roberto Battaiola    |
| BKL            | 10           | John A. Blackwell    |
| BMF            | 14           | Michael Boschat      |
| BMIG           | 28           | Michel Besson        |
| BRAF           | 4            | Raffaello Braga      |
| BROB           | 25           | Robert Brown         |
| BXZ            | 23           | Jose Alberto Berdejo |
| BZX            | 21           | A. Gonzalo Vargas    |
| CIOA           | 1            | Ioannis Chouinavas   |
| CKB            | 27           | Brian Cudnik         |
| CLDB           | 19           | Laurent Cambon       |
| CMAB           | 14           | Maurizio Cervoni     |
| CNT            | 21           | Dean Chantiles       |
| CVJ            | 9            | Jose Carvajal        |
| DARB           | 7            | Aritra Das           |
| $\mathrm{DFR}$ | 9            | Frank Dempsey        |
| DJOB           | 10           | Jorge del Rosario    |
| DJSA           | 9            | Jeff DeVries         |
| DJVA           | 20           | Jacques van Delft    |
| DMIB           | 29           | Michel Deconinck     |
| DUBF           | 19           | Franky Dubois        |
| EHOA           | 23           | Howard Eskildsen     |
| ERB            | 6            | Bob Eramia           |
| FALB           | 19           | Allen Frohardt       |
| FERA           | 8            | Eric Fabrigat        |
| FLET           | 26           | Tom Fleming          |
| FTAA           | 9            | Tadeusz Figiel       |
| GIGA           | 29           | Igor Grageda Mendez  |
| HALB           | 20           | Brian Halls          |
| HKY            | 24           | Kim Hay              |
| HOWR           | 25           | Rodney Howe          |
| HSR            | 17           | Serge Hoste          |
| IEWA           | 22           | Ernest W. Iverson    |

Table 3: 202309 Number of observations by observer.

Continued

| Observer | Number of    |                             |
|----------|--------------|-----------------------------|
| Code     | Observations | Observer Name               |
| ILUB     | 10           | Luigi Iapichino             |
| JGE      | 7            | Gerardo Jimenez Lopez       |
| JSI      | 5            | Simon Jenner                |
| KAND     | 27           | Kandilli Observatory        |
| KAPJ     | 12           | John Kaplan                 |
| KNJS     | 26           | James & Shirley Knight      |
| KSOB     | 5            | Souvik Karmokar             |
| KTOC     | 14           | Tom Karnuta                 |
| LKR      | 5            | Kristine Larsen             |
| LVY      | 25           | David Levy                  |
| MARC     | 5            | Arnaud Mengus               |
| MARE     | 17           | Enrico Mariani              |
| MCE      | 19           | Etsuiku Mochizuki           |
| MJHA     | 23           | John McCammon               |
| MLL      | 10           | Jay Miller                  |
| MMI      | 30           | Michael Moeller             |
| MSS      | 10           | Sandy Mesics                |
| MWMB     | 2            | William McShan              |
| MWU      | 20           | Walter Maluf                |
| ONJ      | 9            | John O'Neill                |
| PLUD     | 17           | Ludovic Perbet              |
| RARD     | 5            | Arnav Ranjekar              |
| RJV      | 17           | Javier Ruiz Fernandez       |
| SDOH     | 30           | Solar Dynamics Obs - HMI    |
| SJUA     | 14           | Julian Simon Lopez-Villalta |
| SNE      | 2            | Neil Simmons                |
| SRIE     | 18           | Rick St. Hilaire            |
| TDE      | 24           | David Teske                 |
| TNIA     | 15           | Nick Tonkin                 |
| TPJB     | 2            | Patrick Thibault            |
| TST      | 20           | Steven Toothman             |
| URBP     | 28           | Piotr Urbanski              |
| VIDD     | 14           | Dan Vidican                 |
| WGI      | 3            | Guido Wollenhaupt           |
| WND      | 20           | Denis Wallian               |
| WWM      | 25           | William M. Wilson           |
| Totals   | 1167         | 74                          |

Table 3: 202309 Number of observations by observer.

#### 3.4 Generalized Linear Model of Sunspot Numbers

Dr. Jamie Riggs, Solar System Science Section Head, International Astrostatistics Association, maintains a relative sunspot number  $(R_a)$  model containing the sunspot numbers after the submitted data are scrubbed and modeled by a Generalized Linear Mixed Model (GLMM), which is a different model method from the Shapley method of calculating  $R_a$  in Section 3 above. The GLMM is a statistical model that accounts for variation due to random effects and fixed effects. For the GLMM  $R_a$  model, random effects include the AAVSO observer, as these observers are a selection from all possible observers, and the fixed effects include seeing conditions at one of four possible levels. More details on GLMM are available in the paper, A Generalized Linear Mixed Model for Enumerated Sunspots (see 'GLMM06' in the sunspot counts research page at http://www.spesi.org/?page\_id=65).

Figure 7 shows the monthly GLMM  $R_a$  numbers for a rolling eleven-year (132-month) window beginning within the 24th solar cycle and ending with last month's sunspot numbers. The solid cyan curve that connects the red X's is the GLMM model  $R_a$  estimates of excellent seeing conditions, which in part explains why these  $R_a$  estimates often are higher than the Shapley  $R_a$  values. The dotted black curves on either side of the cyan curve depict a 99% confidence band about the GLMM estimates. The green dotted curve connecting the green triangles is the Shapley method  $R_a$  numbers. The dashed blue curve connecting the blue O's is the SILSO values for the monthly sunspot numbers.

The tan box plots for each month are the actual observations submitted by the AAVSO observers. The heavy solid lines approximately midway in the boxes represent the count medians. The box plot represents the InterQuartile Range (IQR), which depicts from the  $25^{th}$  through the  $75^{th}$  quartiles. The lower and upper whiskers extend 1.5 times the IQR below the  $25^{th}$  quartile, and 1.5 times the IQR above the  $75^{th}$  quartile.





# 4 Endnotes

- Sunspot Reports: Kim Hay solar@aavso.org
- SID Solar Flare Reports: Rodney Howe rhowe137@icloud.com

# 4.1 Antique telescope project



Figure 8: A recent replica of an antique telescope built by Gonzalo Vargas (BZX) (left), and a drawing for September 23 (right).

# 5 References

U.S. Dept. of Commerce-NOAA, Space Weather Prediction Center. 2022, GOES-16 XRA data. ftp://ftp.swpc.noaa.gov/pub/indices/events/

Clette, Fr'ed'eric (2021), The Sunspot Number:

Reconstructing the Past Solar Cycle for the Future. [data set]. Space Research Today 210: 10-23. Royal Observatory of Belgium. https://www.sidc.be/silso/datafiles.

SDO — Data, The Sun Now https://sdo.gsfc.nasa.gov/data/aiahmi/

Svalgaard, L., [and Schatten, K. H.] (2017), Sunspot Group Numbers Since 1900 and Implications for the Long-term Record of Solar Activity. https://www.researchgate.net/publication/ 316736457\_Sunspot\_Group\_Numbers\_Since\_1900\_and\_Implications\_for\_the\_Long-term\_Record\_ of\_Solar\_Activity