Skip to main content

V838 Monocerotis: the central star and its environment a decade after outburst

Due to the New England winter storm currently affecting the area, phone coverage at the AAVSO may be much reduced until Thursday. The staff is still available via email, and we suggest using that method to contact us if you need assistance.

Aims. V838 Monocerotis erupted in 2002, brightened in a series of outbursts, and eventually developed a spectacular light echo. A very red star emerged a few months after the outburst. The whole event has been interpreted as the result of a merger. Methods. We obtained near-IR and mid-IR interferometric observations of V838 Mon with the AMBER and MIDI recombiners located at the Very Large Telescope Interferometer (VLTI) array. The MIDI two-beam observations were obtained with the 8m Unit Telescopes between October 2011 and February 2012. The AMBER three-beam observations were obtained with the compact array (B≤35m) in April 2013 and the long array (B≤140m) in May 2014, using the 1.8m Auxiliary Telescopes. Results. A significant new result is the detection of a compact structure around V838 Mon, as seen from MIDI data. The extension of the structure increases from a FWHM of 25 mas at 8 {\mu}m to 70 mas at 13 {\mu}m. At the adopted distance of D = 6.1 ± 0.6 kpc, the dust is distributed from about 150 to 400 AU around V838 Mon. The MIDI visibilities reveal a flattened structure whose aspect ratio increases with wavelength. The major axis is roughly oriented around a position angle of −10◦, which aligns with previous polarimetric studies reported in the literature. This flattening can be interpreted as a relic of the 2002 eruption or by the influence of the currently embedded B3V companion. The AMBER data provide a new diameter for the pseudo-photosphere, which shows that its diameter has decreased by about 40% in 10yrs, reaching a radius R∗ = 750 ± 200 R⊙ (3.5 ±1.0 AU). Conclusions. After the 2002 eruption, interpreted as the merging of two stars, it seems that the resulting source is relaxing to a normal state. The nearby environment exhibits an equatorial over-density of dust up to several hundreds of AU.

Authors: Olivier Chesneau (LAGRANGE), Florentin Millour (LAGRANGE), Orsola De Marco, S.N. Bright (LAGRANGE), Alain Spang (LAGRANGE), D. P. K. Banerjee (PRL), N. M. Ashok (PRL), T. Kaminski (MPIFR), John P. Wisniewski, Anthony Meilland (LAGRANGE), Eric Lagadec (LAGRANGE)

Read the paper on astro-ph


AAVSO 49 Bay State Rd. Cambridge, MA 02138 617-354-0484